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Early relativistic cosmology

As was just mentioned, like Newton, Einstein also thought that the universe
is static on the large scale. Like Newton’s attempted model of the universe,
Einstein’s universe was also imagined to be a homogeneous and isotropic
distribution of matter. These criteria have been followed by most model
makers in cosmology. We briefly discuss the implications of these assump-
tions.

The adjectives homogeneous and isotropic imply the following characteris-
tics. Suppose that, viewed on the large scale, the universe looks the same from
all vantage points. There is no preferred observing position in the universe; all
positions are alike. This is the property of homogeneity. Furthermore, as we
observe the universe from any such vantage point, should we notice any
differences in the structure of the universe as we look in different directions?
If we do not notice any directional differences, then we say that the universe
is isotropic. In other words, if you are taken blindfolded from one spot to
another in a homogeneous and isotropic universe, after removing your blind-
fold you cannot tell where you are or in what direction you are looking.

Even with these simplifying assumptions about the large-scale structure of
the universe, the quantitative details were still lacking in Einstein’s model. To
determine these details, Einstein needed his theory of gravitation — the gen-
eral theory of relativity.

The geometry of spacetime is different from Euclid’s geometry in the
neighborhood of a massive object like the Sun. It is the main feature of
general relativity that any distribution of matter (and energy) should affect
the geometry of spacetime around it. For example, the geometry of spacetime
is different from Euclid’s in the neighborhood of a massive object like the
Sun. Einstein therefore expected that the distribution of matter (in the form
of stars, galaxies, etc.) should determine the geometry of the large-scale
structure of the universe. But here he encountered a major difficulty.
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The equations of general relativity, as obtained by Einstein in 1915, per-
mitted models of the universe that were homogeneous and isotropic but not
static. This difficulty is in fact no different from that which had troubled
Newton two centuries earlier. How can matter remain stationary in spite of
its self-gravity?

To appreciate this difficulty within the framework of general relativity we
need to begin with Einstein’s equations

i1 8nG _;

as obtained by him in his 1915 formulation'. The left-hand side of these
equations contains tensors describing the geometry of spacetime whereas
the right-hand side has the energy—momentum tensor for the physical con-
tents of the universe’. These equations tell us in quantitative terms how the
physical contents of the universe determine its geometrical structure.

The assumptions of homogeneity and isotropy tell us that space has con-
stant curvature which Einstein assumed to be positive. We will discuss the
motivation for this supposition later. Such a space is finite but unbounded,
being the hypersurface of a sphere in four dimensions, expressed, say, by the
cartesian coordinate relation

x% + x% + x% + xﬁ =S (2.2)

To use coordinates intrinsic to the surface define

x4 =Scosy, Xx;=Ssinyxcosf, x,=.Ssinysinécosq, (2.3)
x3 = S'sin x sin 6sin ¢.
The spatial line element on the surface S is then given by
do® = (dx ' 4-(dx ) +(dx3 )’ +(dxs )’ (2.4)
= s’ [dX2 + sin’ X(d02 + sin’ 9d¢2)].
The ranges mathematically permitted of 6, ¢ and x are given by
O0<x<mn, 0<O6=<m 0=<¢<2m (2.5)

But there are two geometrical alternatives open to us. The first is that x
takes the entire range 0 < x < 7, and this gives us what is commonly known

a We will assume that the reader is familiar with general relativity. For one who is not, the above
discussion can be found in a number of elementary texts on the subject. In particular we follow the
treatment given by Narlikar’.
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as spherical space. If, however, we identify antipodal points of this sphere, its
connectivity is changed and the space is then known as elliptical space.

Another way to express do” is through coordinates r,6,¢, with
r=sin x (0 < r < 1). In elliptical space r runs through this range once; in
spherical space it does so twice. In either case the spatial line element (2.4)
takes the form

2

d
dJZ::Sz[l d 2+—ﬂ(d92+-mn29d¢6}. (2.6)
—r

The constant S is called the ‘radius’ of the universe. The spacetime line
element for the Einstein universe is therefore given by

ds* = *di* — do? (2.7)

= df* — S*[dy’ + sin’ x(d&” + sin® 0d¢”)]

11—/

2
:<¥dﬁ-sa[ dr -+r%d92+-mn2ed¢%}.

Note that we have derived the line element entirely from the various
assumptions of symmetry. The field equations have not yet been used. We
will now see what happens when we substitute the above line element into the
left-hand side of Einstein’s equations. We get, with S independent of time for
a static universe,

1 3

Ry —=R=—-= 2.
0 B S2 ( 8)
1 1 1 1
1 2 3

To complete the field equations, Einstein used the energy tensor for dust at
rest and of uniform density p, in the above frame of reference, which gives

70 = poc? (2.10)

Tl =T5=T; =0.
This leads to two independent equations:
3 8nG 1

—g=—a =0 @.11)



8 Early relativistic cosmology

Clearly no sensible solution is possible from these equations, thus suggesting
that no static homogeneous isotropic model of the universe with py, > 0 is
possible under the Einstein equations.

It was this inability to generate such a model that led Einstein to modify his
equations to

1, : 8vG .
Rl —>giR+2gh = ——2T}. 2.12)
2 c
If we introduce this additional constant X into the picture, our equations in
(2.11) are modified to

k_%:_fi’TGpo 2.13)
and

A — % =0. (2.14)
We now do have a sensible solution. We get

S = \/1 — #\/G—po' (2.15)

Einstein considered this solution as justifying his conjecture that with
sufficiently high density it should be possible to ‘close’ the universe. In
(2.15) we have the radius S of the universe as given by the matter density
0o, With the result that the larger the value of p,, the smaller is the value of S.
However, if A is a given universal constant like G, both p, and S are deter-
mined in terms of A (as well as G and ¢). How big is A?

In 1917 very little information was available about pg, from which A could
be determined. The value of

S~ 10%-10"cm

quoted in those days is therefore only of historical interest. If we take p, as
~ 107" g cm™ as the rough estimate of mass density in the form of galaxies,
we get S~ 10* cm and A ~ 107 cm™2.

The A-term introduces a force of repulsion between two bodies that
increases in proportion to the distance between them. The above value of A
is too small to make any detectable difference from standard general relativ-
ity (that is, with A = 0) in any of the Solar System tests. Thus the Einstein
universe faced no threat from the local tests of gravity. The model, however,
did not survive much longer than a decade, for reasons discussed next.
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Apart from finding the solution for the large-scale structure of the uni-
verse, Einstein had further expectations from his model. First, he expected
the solution to be unique, given the assumptions of homogeneity and iso-
tropy. This would have provided a reason why the universe is the only one of
its kind. Further, he believed that with the A-term there was no possible
empty space solution. In this belief he was influenced by Mach’s principle
which required inertia to be fully determined by matter, implying that it
should be impossible to determine the spacetime geometry and test particle
trajectories in the absence of bulk matter.

These expectations were not realized. In fact shortly after the publication
of Einstein’s paper’, W. de Sitter published another solution of Einstein’s
field equations®. This had the line element given by

ds? = cos> (g) CdT? — dp* — S sin2§(d02 + sin2 0dg?), (2.16)
with p used here as a radial coordinate, with the density of matter zero and
A = 3/S%. Defining

. P
R=S -, 2.17
smS ( )

then the above line element becomes

R R’
ds® = (1 - ?) 2dr? -~ > — R°[d& + sin” 0dg¢’]. (2.18)

A further transformation of coordinates

1 H*R?
R =rexp Ht, T:t—2H1n<1— 2 ) (2.19)
then takes the line element to
ds’ = *dr* — &' dr* + r*(d6” + sin’ 0d¢’) | (2.20)

where H = ¢/S.

Both (2.18) and (2.20) are the better-known forms of the de Sitter line
element although in his 1917 paper de Sitter used only (2.16).

The de Sitter universe, being empty, offered a counter-example to
Einstein’s second expectation. Further, by offering an alternative model for
the universe for a non-zero A, de Sitter demonstrated that the Einstein uni-
verse is not a unique solution of the cosmological problem.
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Much has been written about these theoretical implications of the de Sitter
model and its role vis-a-vis the Einstein model. It is true that the primary
issues of inertia and Mach’s principle had been the motivating concepts for
the genesis of the Einstein universe. Its contact with astronomical obser-
vations had been minimal except for the assumption (which later turned
out to be wrong!) that the universe is static’. Nevertheless, de Sitter himself
seems to have paid considerable attention to the then available observations
in order to place limits on the cosmological parameters of his model. It is of
interest to briefly give a sample of his arguments.

In units which appear strange in today’s usage, de Sitter chose to express
physical quantities in terms of a day for the time unit, the astronomical unit
(AU) for distance and solar mass M for mass. Thus ¢ =173,
G =2.96 x 107, and unit density of matter corresponds to 6 x 10~ g cm™>.

Taking the Einstein model first and noting that some of the spiral nebulae
are galaxies similar to ours, de Sitter put their linear diameters as d ~ 10° and
angular diameters ~ 5" (the limits of observations) to set their distance at
<6x 10" AU. Taking this upper limit as the value of S, the maximum
extent in the elliptical space gives 7.S/2 < 10'?. Using the density formula
(2.15) he then estimated the mass in the whole universe

2°S 871G

w=T2 = (21)

so that M ~ 8 x 10’S, with a density of 8 x 10°/S* in de Sitter’s units.
Taking the mass of our own Galaxy as ~ % X 1010M® (based on Kapteyn’s
estimate) he found S = 41 which was absurdly low! Taking instead a density
value of ~ 107!7 based on the star density at the Galactic center, he found
S =9 x 10" giving a total mass M =7 x 1019M®.

Extending arguments beyond our Galaxy, de Sitter argued that if the
whole universe is filled with galaxies with their typical separation ~ 10'°,
large compared to their linear dimensions, then the total mass in the form
of galaxies worked out to only ~ 2 x 10'®. He then argued that ‘According to
this view, only a small portion of the world-matter would be condensed into
ordinary matter.’

This argument rings a bell! Today, when many cosmologists find the astro-
nomically observed matter to be insufficient to account for the amount
required by a theoretical model, they jump to the conclusion that the balance

b A parallel may be drawn with the genesis of special relativity which was not motivated by the
Michelson—-Morley experiment, but by considerations of accommodating electrodynamics within the
framework of the principle of relativity of motion.
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must be made up by ‘non-ordinary’ matter. de Sitter, however, went on to
revise the observed estimate of the mean density of matter from 10™'7 down
to ~ % x 107 and managed to obtain a consistent picture with S < 5 x 10'°.
He concluded:

We can thus consider the value (S < 5 x 10') as an upper limit — subject, of
course, to the uncertainty (which is considerable) of the hypothesis and of
the numerical data thus derived.

So far as his own model was concerned, de Sitter referred to the cosmo-
logical redshift due to expansion: “The lines in the spectra of very distant stars
or nebulae must therefore be systematically displaced towards the red, giving
rise to a spurious positive radial velocity.” Using the then available data on
what he called ‘helium stars’, he used the predictions of his model to estimate
S = % x 10", This is perhaps the earliest application of the cosmological
redshift hypothesis.

The astronomical data today would vitiate these estimates but their merit
lies in the boldness with which the meagre observations were used to set limits
on parameters of the theory. They also remind us that when one attempts to
match theories with observations that have been obtained with considerable
uncertainties (inevitable when the instruments have been stretched to their
limits) the results may not always be correct.

The Friedmann—Robertson—Walker models

With the data on nebular redshifts still very uncertain in the early 1920s, this
work of de Sitter was not taken seriously by astronomers. Nor was the work
of Friedmann of 1922° and 1924° that extended the investigations of Einstein
(matter without motion) and de Sitter (motion without matter) to world
models that had both matter and motion. Friedmann discussed open as
well as closed models and obtained a dynamical differential equation describ-
ing the change of the scale factor S with time.

Einstein made a brief reference to this work, and although by the mid-
1920s there were sufficient data on nebular redshifts (cf. next chapter) neither
he nor Friedmann himself felt the need to relate these non-stationary models
to them. In fact Friedmann’s papers were hardly known for nearly a decade
after their publication.

¢ One of us, (JVN) recalls that at the 1962 Warsaw Conference on General Relativity and Gravitation,
some Russian relativists were complaining that the cosmology community did not give due recognition
to Friedmann when referring to the standard big-bang models. The belated recognition began to come in
the late 1960s.
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Lemaitre’ and Robertson® in the late 1920s independently developed cos-
mological models similar to Friedmann’s. In his 1927 paper, Lemaitre
derived the two equations

S*+ ¢
S2

1
=3 (Ac? + kpc?) (2.22)

2T AP —up. 2.23)
p (

Whereas Friedmann had considered ‘dust’ models (p = 0), Lemaitre consid-
ered dust as well as radiation (p, = p,¢*/3). He also derived the energy con-
servation equation

%{S?’(pcz)} +3p,5°S =0 (2.24)
where p is the combined density of matter and radiation and p, the radiation
pressure.

Lemaitre’s models included Einstein’s and de Sitter’s models as special
cases. The Friedmann models also were special cases (with zero radiation).
Lemaitre also derived the cosmological redshift formula

_ S(n)

14+z=
S(ty)

(2.25)

for radiation that left the source at epoch #; and arrived at the observer at
epoch 7. An approximate Hubble law also followed. Robertson® found a
similar result in 1928.

It is interesting how prejudices have continued to govern theorists about
whether the cosmological models are open or closed. At the 1931 meeting of
the British Association, the Bishop of Birmingham’ declared: ‘It is fairly
certain that our space is finite, though unbounded. Infinite space is simply
a scandal to human thought. .. the alternatives are incredible.” It was against
this background where only closed models were thought to matter, that
Einstein and de Sitter'® wrote a joint paper in 1932 describing a simple
open model with the line element

ds* = dt* — S*()[dr* + r*(d6” + sin® 0d¢”) | (2.26)

and with S(7) & />. Known as the Einstein—de Sitter model it is perhaps the
simplest of the Friedmann models. This model had A = 0 and it belonged to a
later period when Einstein had given up the idea of a cosmological constant.



The Friedmann—Robertson—Walker models 13

This is the model that currently goes under the name ‘flat 2 = 1 model’, and
we wonder how many cosmologists of today can trace its genesis to Einstein
and de Sitter.

By 1932 the observational paper of Hubble published in 1929 (next chap-
ter) had become well known and the idea of the expanding universe had
begun to take root. The solutions obtained so far were, however, somewhat
ad hoc, being based on the simplifying assumptions decided separately by
each author. The purist may have worried at the emergence of a unique time
coordinate from a theory which was generally covariant. Did such ‘time-
dependent’ solutions have a physical meaning?

A rigorous approach to cosmological models finally emerged from the
independent work of Robertson'' and Walker'?. Starting from two well-
defined assumptions, viz. the Weyl postulate and the cosmological principle
of homogeneity and isotropy, they were able to obtain the most general line
element as

dr’
1 — kr?

ds* = *di* — 52(1){ + r*(d6” + sin® 0d¢2)}, (2.27)

with k =1 for closed models and k = 0, —1 for open models. Here (r, 6, ¢)
are the constant comoving coordinates of a typical galaxy. The fact that such
coordinates can be defined rests on the assumption that the world lines of
galaxies form a bundle of non-intersecting geodesics diverging from a space-
time point in the past. Thus through each spacetime point a unique member
of the bundle passes. The time coordinate is that measured by a galaxy as its
proper time. This is Weyl’s postulate. The cosmological principle tells us that
the hypersurfaces 7= constant are homogencous and isotropic. What
Robertson and Walker did was to give a mathematical derivation of the
line element (2.27) from these postulates. Thus the Weyl postulate and the
cosmological principle single out a global coordinate system. The time coor-
dinate 7, commonly called the cosmic time, arises in this way. There is no
contradiction between this global symmetry and the local covariance of gen-
eral relativity.

In Chapter 12 we will return to this discussion and review it in the
modern context. Most of the so-called ‘standard model’ in cosmology
today is based on the early work of Friedmann. Whereas the cosmologists
of the 1930s and the 1940s were content with modest extrapolations of the
present universe, their modern counterparts are more adventurous. Their
extrapolations lead them to a state of the universe that was ~ 10~*s old
with a kinetic temperature ~ 10’ °K! Indeed, to what extent these ideas can
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be called ‘physics’ as opposed to ‘speculations’ will form part of a later
discussion (see Chapter 14).

We end this theoretical discussion with a return to Newtonian cosmology.
Recall that Newton and later workers failed to describe a static infinite uni-
verse in a satisfactory way. By the mid-1930s when the expanding universe
had become the popular model, E.A. Milne and W.H. McCrea took up the
Newtonian problem within this revised framework. Would it be possible to
provide a consistent picture of the expanding universe within Newtonian
physics? Milne and McCrea provided an affirmative answer to this question.
In fact their Newtonian models exactly resemble the Friedmann models in
their dynamical behavior, even with the A-term, although to understand the
redshifts of galaxies one has to apply the Newtonian formula for addition of
velocities to the propagation of light from a receding source.

The 1929 paper of Hubble was the watershed for cosmology. Not only did
Hubble’s law make it clear that the bulk of the observable universe lies
beyond our Galaxy, but it also held out the hope of testing the as-yet abstract
mathematical models of relativistic cosmology. The following long-term pro-
grams emerged from the early work on observational cosmology.

(1) To measure the Hubble constant H, more accurately. This required the
refinement of techniques of measuring extragalactic distances, as well as
finding new ways to extend the cosmic distance ladder farther.

(i) To measure the predicted slowing down of the rate of expansion. Within the
framework of relativistic cosmology, the so-called deceleration parameter

(S
qo = _H02(§) ’
=1

has the range of values 0 < ¢ < % for open models and ¢q > %for the closed
models (gq :% holds for the Einstein—de Sitter model). By measuring ¢,
through the redshift magnitude relation out to larger redshifts, say, to
z 2~ (0.2, it was hoped to settle the open vs. closed question.

(iii) To measure the curvature of space. Following the work of R.C. Tolman,
Hubble hoped to settle the above question by counting galaxies out to
increasing distances. The belief was that in a homogeneous universe the
number count will reflect the volume-radius relationship and thereby enable
us to decide which of the three alternative k = 0, 1 or —1 best fits the data.

We will follow these and other cosmological developments of the 1930s in
the following chapter. By hindsight we can now say that all the three pro-
grams were doomed to inconclusive results. Paradoxically, the improved
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observing techniques have not helped in settling these questions; instead they
have revealed the increasingly complex structure of the extragalactic universe
and are only now driving home the point that the expectations of the 1930s
were based on cosmological models that were too simplistic.
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