A Unified Theory of Voting
Directional and Proximity Spatial Models

This book addresses the questions: How do voters use their own issue positions and those of candidates to decide how to vote? How do candidates choose policy positions in response to the behavior of voters? Does a voter tend to choose the candidate who most nearly shares the views of the voter or rather a candidate who holds more extreme or intense views but in the same direction as the voter, perhaps because voters discount candidates’ abilities to implement the policies they advocate? The authors develop a unified model that incorporates these and other voter motivations and, using conditional logit and other statistical methods, assess its empirical predictions – for both voter choice and candidate strategy – in the United States, Norway, and France. The analyses show that a combination of motivations involving proximity, direction, discounting, and party identification is compatible with the choices made by voters and with the mildly but not extremely divergent policies that are characteristic responses to these choices in both two-party and multiparty electorates. All of these motivations are necessary to understand the linkage between candidate issue positions and voter preferences.

Samuel Merrill III is Professor of Mathematics and Computer Science at Wilkes University, Wilkes-Barre, PA. He received a Ph.D. in mathematics from Yale University. His research interests include mathematical modeling in voting behavior, party strategy, and social choice, as well as medical statistics. He is the author of Making Multicandidate Elections More Democratic (Princeton University Press, 1988) and has published in a number of journals, including the American Political Science Review, the American Journal of Political Science, Public Choice, and the Journal of the American Statistical Association.

Bernard Grofman is Professor of Political Science and Social Psychology at the University of California, Irvine. He received a Ph.D. in Political Science from the University of Chicago. His major fields of interest are American politics, comparative election systems, and social choice theory. He has published in a number of journals, including the American Political Science Review, the American Journal of Political Science, and Public Choice, and he has authored or co-edited eleven books, including Information, Participation and Choice (University of Michigan Press, 1995).
A Unified Theory of Voting

Directional and Proximity Spatial Models

SAMUEL MERRILL III
BERNARD GROFMAN
Contents

List of Tables and Figures ix
Acknowledgments xiii

1 Introduction 1
 1.1 How Do Voters Decide? 1
 1.2 Spatial Models 4
 1.3 Overview 10

Part I Models of Voter Behavior 17

2 Alternative Models of Issue Voting 19
 2.1 Proximity Models 19
 2.1.1 The Downsian Proximity Model 19
 2.1.2 The Grofman Discounting Model 22
 2.2 Directional Models 23
 2.2.1 The Matthews Directional Model 25
 2.2.2 The Rabinowitz–Macdonald Directional Model 29
 2.3 Comparison of Models 32

3 A Unified Model of Issue Voting: Proximity, Direction, and Intensity 38
 3.1 Limitations of Pure Models 38
 3.2 The Unified Model 40
 3.3 Relation between the Grofman Discounting Model and the RM Model with Proximity Constraint 47
 3.4 Conclusions 50
4 Comparing the Empirical Fit of the Directional and Proximity Models for Voter Utility Functions

4.1 Discriminating between Models

4.2 Utility Curves

4.3 Correlation and Regression Analyses of Pure Models of Voter Utility

4.3.1 U.S. Data

4.3.2 Non-U.S. Data

4.4 Discussion

5 Empirical Model Fitting Using the Unified Model: Voter Utility

5.1 Testing the Proximity and Directional Models of Voter Utility within a Nested Statistical Framework

5.2 Correlation Analysis

5.3 Fitting the Unified Model of Voter Utility via Nonlinear Regression

5.4 Parameter Estimates for the Mixed Proximity–RM Model

5.5 Discussion

6 Empirical Fitting of Probabilistic Models of Voter Choice in Two-Party Electorates

6.1 Probabilistic Models

6.2 A Unified Model of Voter Choice

6.3 Fitting the Conditional Logit Model to American NES Data

6.4 Discussion

7 Empirical Fitting of Probabilistic Models of Voter Choice in Multiparty Electorates

7.1 Multiparty Elections

7.2 Mixed Deterministic and Probabilistic Models

7.3 Fitting the Conditional Logit Model to Norwegian Data

7.4 Fitting the Conditional Logit Model to French Data

7.5 Discussion and Conclusions
Part II \ Models of Party or Candidate Behavior and Strategy

8 Equilibrium Strategies for Two-Candidate Directional Spatial Models 109
8.1 Stable Strategies 109
8.2 Nash Equilibrium under the Grofman Discounting Model and Constrained Directional Models 110
8.3 Nash Equilibria under the Matthews Directional Model 114
8.3.1 Characterization of Condorcet Directional Vectors in Two Dimensions 115
8.3.2 The Condorcet Vacuum for American and Norwegian Data 120
8.4 Strategies when Different Models Govern Each Candidate 123
8.5 Conclusions 127

9 Long-term Dynamics of Voter Choice and Party Strategy 128
9.1 Why Is There Limited Polarization and Alternation of Parties? 128
9.2 Base Dynamic Model under Discounting 131
9.3 Convergence to Separate Points of Stability for Each Party under the Base Model 133
9.4 Party Strategy under Discounting 135
9.5 Modifications of the Model for Asymmetric Parties and Disparate Discount Factors 138
9.6 Discussion 141

10 Strategy and Equilibria in Multicandidate Elections 144
10.1 Multicandidate Equilibria 144
10.2 A Multidimensional Convergent Equilibrium 145
10.3 Divergent Equilibria with Partisan Voting and the Effect of a Directional Component 148
10.4 Regions of Candidate Support for Directional Models for More than Two Candidates 151
10.5 Discussion and Conclusions 156
Contents

11 Strategy under Alternative Multicandidate Voting

11.1 Alternative Voting Procedures 158
11.2 Are Centrists or Extremists Favored? 160
11.3 Simulation Results 161
11.4 Conclusions 162

Postscript Taking Stock of What’s Been Done and What Still Needs to Be Done 164
Future Work 166

Appendices

3.1 Mixed Proximity–RM Models 170
4.1 Methodology: Data Analysis 172
4.2 Methodology: Linear versus Quadratic Utility Functions 173
4.3 Methodology: Mean versus Voter-specific Placements of Candidates 174
5.1 The Nature and Magnitude of Projection Effects 179
5.2 Interpretation of Model Parameters 181
5.3 The Westholm Adjustment for Interpersonal Comparisons 181
7.1 Methodology: The Lewis and King Critique 186
7.2 Methodology: English Translations of Questions from the Norwegian Election Studies 189
7.3 A Strategic Probabilistic Model of Voter Choice 189
8.1 Notes on Equilibrium Analysis 191
8.2 Use of Harmonic Decomposition to Determine Equilibria 193

Glossary of Symbols 195
References 196
Index 207
List of Tables and Figures

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Summary of pure models as special cases of the unified model and specification of utility functions</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Correlation between model predictions and thermometer scores using voter-specific placements of candidates: American NES 1980–96</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Adjusted R^2-squared values for proximity and RM model predictions of thermometer scores using voter-specific placements of candidates: American NES 1968–92</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Correlation between model predictions and thermometer scores using projection-adjusted placements of candidates: American NES 1980–96</td>
<td>69</td>
</tr>
<tr>
<td>5.2</td>
<td>Parameter estimates for the unified model using projection-adjusted placements of candidates: American NES 1980–96</td>
<td>72</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparative parameter estimates for the unified model using different scoring methods: American NES 1980–96</td>
<td>73</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparative parameter estimates for the RM model with proximity constraint using different scoring methods: American NES 1980–96</td>
<td>75</td>
</tr>
<tr>
<td>6.1</td>
<td>Maximum likelihood estimates for parameters of</td>
<td></td>
</tr>
</tbody>
</table>
x List of Tables and Figures

the proximity–Matthews probabilistic submodel of voter choice: American NES 1980–96 87
6.3 Log-likelihoods for nested models of voter choice: American NES 1980–96 88
7.1 Model-predicted vote share for the 1988 French Presidential Survey, based on the issue of immigration 93
7.2 Parameter estimates for the unified model of voter choice and its submodels (seven issue dimensions): Norwegian Election Study 1989 96
7.3 Parameter estimates for the unified model of voter choice and its submodels (five issue dimensions): Norwegian Election Study 1993 97
7.4 Parameter estimates for the unified model of voter choice and its submodels (two issue dimensions): Norwegian Election Study 1993 99
7.5 Parameter estimates for the unified model of voter choice and its submodels (four issue dimensions): French Presidential Election Study 1988 104
11.1 Mean rank of winning candidate by voting system, ranked by nearness to neutral point 162
A.5.1 Standardized regression coefficients for the 1989 Norwegian Election Study for various modeling choices for proximity and RM utilities 184
A.7.1 Parameter estimates for Merrill’s strategic voting model for Norway and Sweden 191

Figures
1.1 Directional voting with discounting page 6
2.1 Downsian spatial model 21
2.2 Utilities for various configurations for which voter, V, and candidate, C, agree on the horizontal
List of Tables and Figures

- Dimension (economic policy) but disagree on the vertical dimension (social policy) 27
- Utility under the RM directional model 30
- Utility curves for pure models for voter in a fixed position 33
- Indifference lines under alternative models 34
- Indifference lines under directional models 43
- Comparison of utility curves for Grofman discounting model and mixed proximity–RM model for voter in a fixed position 45
- Equivalence of Grofman discounting model and mixed proximity–RM model 49
- Plots of mean thermometer scores for candidates versus liberal–conservative location of the respondent: 1984 American NES 55
- Plots of mean thermometer scores for candidates versus liberal–conservative location of the respondent: 1988 American NES 56
- Mean thermometer scores, stratified by voter location (L/C): 1984 American NES 58
- Scatter plot of Norwegian parties in 1993 with respect to left–right and EEC scales 101
- Nash equilibrium under the Grofman discounting model 111
- Yolk and pseudo-yolk 113
- Indifference line for candidates C^* and C and characteristic vector A of the support set of C^* 116
- Star angles for small electorates 118
- Star for 201 voters uniformly distributed on disc 119
- Star for 200 voters uniformly distributed on disc 121
- Star for 201 voters from the 1984 American NES 122
- Star for 201 voters following a tripolar distribution 123
- Star for 201 voters from the 1989 Norwegian Election Study 124
- Strategy for challenger 126
- Base dynamic model: Median voter at 0 131
- Base dynamic model (median voter at 0; $d = 0.5$):
List of Tables and Figures

Location of party Right in elections won by Right, for three starting values of the status quo 135

9.3 Base dynamic model (median voter at 0; \(d = 0.5\)): Movement of the location of the status quo with victories alternating between parties 136

9.4 Strategic dynamic model: Median voter at 0 137

9.5 Unbalanced dynamic model: Median voter offset from 0 139

9.6 Unbalanced dynamic model: Movement of the status quo for voter median at 0.25 (\(d = 0.5\)) 140

10.1 Distribution of support in the Adams probabilistic model 147

10.2 Model predictions of party locations versus actual (mean) party placements by model type: Norway 1989 151

10.3 Regions of support for the RM and proximity models: No candidate in the interior of the convex hull of the others 153

10.4 Regions of support for the RM and proximity models: One candidate in the interior of the convex hull of the others 155

A.4.1 Utility differences by model 175

A.7.1 Regression of estimated bias in the mixing parameter for simulated data 188
Acknowledgments

No work stands on its own. We draw heavily from the basic Downsian proximity voting framework and the huge literature extending Downs's work, particularly that of Enelow, Hinich, and Munger. We were directly inspired by the directional voting ideas of Matthews (1979), which, in turn, can be linked to ideas in social choice in Schofield (1983, 1985); and by the work of Rabinowitz, Macdonald, and their co-authors (e.g., Rabinowitz and Macdonald, 1989) and the literature their work has inspired.

1 Recent important works focusing on proximity spatial models of electoral competition include Enelow and Hinich's The Spatial Theory of Voting (1984); Ordeshook's Game Theory and Political Theory (1986); Mueller's Public Choice II (1989); and Hinich and Munger's Ideology and the Theory of Political Choice (1994). Enelow and Hinich's second book (Advances in the Spatial Theory of Voting, 1990) treats multi-candidate electoral competition and the effect of policy preferences on the part of candidates, among other topics. While the principal focus of Coughlin's Probabilistic Voting Theory (1992) is the proximity model, he also derives equilibrium results for candidate strategy under assumptions based on directionality and for a fixed-sum constraint on the available resources to be redistributed to voters. Pierce's Choosing the Chief: Presidential Elections in France and the United States (1995a), van der Eijk and Franklin's Choosing Europe? (1996), and Hinich and Munger's recent book, Analytical Politics (1997) include comparison of the Rabinowitz–Macdonald directional model and the proximity model as one among many topics. However, no previous book has systematically compared directional spatial models with the traditional proximity models or investigated the implications of a unified approach for candidate strategy and equilibrium as we do here.

2 Our bibliography lists 35 papers since 1989 dealing with the Rabinowitz-Macdonald directional model, of which at least 29 have already appeared in print at the time of this writing. There is also a direct link between the 1970s work of the mathematical psychologist Douglas Carroll and the Rabinowitz–Macdonald directional model. The Matthews directional model, on the other hand, has received much less attention in the recent literature on candidate and political party competition and to our knowledge has not been the subject of any empirical analysis prior to the publication of four of our own papers on directional models in the 1990s.
We particularly thank James Adams, Jay Dow, Steven Brams, Richard Potthoff, and Robert Tuttle for reading portions of the manuscript and for helpful comments and discussions of it. We also thank them – as well as Scott Feld, Gary King, Nicholas Miller, George Rabinowitz, and Anders Westholm – for general discussions or for correspondence about related topics over the years that helped lay the groundwork for the present work. James Adams kindly gave his permission to include a summary of joint work in progress with one of the authors and made numerous and helpful comments about many aspects of the manuscript. At Cambridge University Press, we thank Alex Holzman, Holly Johnson, and Genevieve Scandone. For library assistance, we thank Dorothy Green and Clover Behrend.

The data sets used in the study were made available by the Interuniversity Consortium for Political and Social Research (ICPSR) and the Norwegian Social Science Data Services (NSD) and are acknowledged with appreciation. We thank Ola Listhaug and Atle Alvheim for facilitating our use of the NSD data. Bernt Aardal and Henry Valen were the Principal Investigators of the Norwegian Election Studies and the Norwegian Bureau of Statistics collected the data. Roy Pierce was the Principal Investigator of the 1988 French Presidential Election Survey.

A portion of the research for this book was done while the first author was a Visiting Scholar in the Department of Biostatistics at the University of Washington. The contributions of the second author to the completion of this manuscript were supported by National Science Foundation Grant No. SBR 446740-21167, Program in Methodology, Measurement, and Statistics (to Bernard Grofman and Anthony Marley). Neither the NSF, the ICPSR, the NSD, the Norwegian Bureau of Statistics, nor the principal investigators of either of the U.S., Norwegian, or French national election studies are responsible for the analyses or interpretations presented here.

Chapters 2, 3, and 5 are based in part on ideas in Merrill and Grofman (1997a, b), while Chapter 8 draws on the work of Schofield (1978, 1985), Matthews (1979), Cohen and Matthews (1980), and Merrill, Grofman, and Feld (1999) and Chapter 9 is drawn from Merrill and Grofman (1998b). Chapters 10 and 11 are based in part
on the work of Adams (forthcoming a, 1997a, 1999), Merrill (1993), Adams and Merrill (forthcoming a), and related ideas in Feld and Grofman (1991). Figures 3.3, 8.1, 8.4, 8.5, 8.6, and 10.2 and Tables 4.2 and 11.1 are reprinted or adapted with permission from Kluwer Academic Publishers.