Fundamentals of OOP and
Data Structures in Java

RICHARD WIENER

University of Colorado, Colorado Springs

LEWIS J. PINSON

University of Colorado, Colorado Springs

=5 CAMBRIDGE

‘5 UNIVERSITY PRESS

=gl

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Ruiz de Alarcén 13, 28014 Madrid, Spain

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2000

Printed in the United States of America

Typeface Century Schoolbook 10/12.5 pt. and ITC Franklin Gothic System ETEX2s [TB]
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data
Wiener, Richard, 1941-
Fundamentals of OOP and data structures in Java / Richard Wiener, Lewis Pinson.
p. cm.
ISBN 0-521-66220-6 (hb)

1. Java (Computer program language) 2. Object-oriented programming (Computer
science) 3. Data structures (Computer science) I. Pinson, Lewis J. II. Title.

QAT76.73.J38 W53 2000
005.1'17 — dc21
99-087328

ISBN 0 521 66220 6 hardback

Contents

Preface

PART ONE: FOUNDATIONS

1 Cornerstones of 0OP

11
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

2 Objects

21
2.2
2.3
24
2.5
2.6

2.7
2.8
2.9
2.10
211
2.12
2.13

Data Abstraction
Encapsulation

Object

Message

Method

Class

Inheritance

Late Binding Polymorphism
Abstract Classes

Interface

Delegation

Generic Classes and Interfaces
Summary

Exercises

Reference Semantics and Creating Objects
Assigning, Aliasing, and Cloning Objects
Equality Testing

Scalar versus Reference Types

Scalar Types and Their Wrappers
Wrapping and Unwrapping — Conversion
from Object to Scalar and Scalar to Object
Strings

Class StringBuffer

Arrays

Vector

Enumeration

Summary

Exercises

page xiii

22

22
23
30
31
31

32
34
36
36
40
44
48
49

vii

viii Contents

3 Class Construction

3.1

3.2
3.3
3.4
3.5
3.6
3.7

Responsibilities between a Class and
Its Users — Design by Contract
Organization of a Class

Packages

Access Modifiers

Naming Conventions

Summary

Exercises

4 Relationships between Classes

4.1
4.2
4.3

4.4
4.5

Inheritance

Composition

Class Relationships in Action —
A Case Study

Summary

Exercises

5 GUIs: Basic Concepts

5.1
5.2
5.3
5.4

The Graphical Part of a GUI Application
Events — Making Communication Work
The MVC Design Pattern

Summary

6 Implementing Simple GUIs in Java

6.1

6.2
6.3
6.4
6.5

Containers and Essential Components —
Building a GUI

Implementation of Event Handling in Java
Implementing MVC in Java

Summary

Exercises

7 Errors and Exceptions

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9
7.10

Classification of Errors and Exceptions
Advertising Exceptions

Throwing an Exception

Creating Exception Classes

Handling Exceptions

The finally Clause

Putting It All Together — An Example
Catching Runtime Exceptions —

An Example

Summary

Exercises

51

51
55
56
60
61
62
63

64

64
65

66
75
76

77

77
82
89
94

95

95
99
108
115
115

119

120
121
124
125
126
127
127

131
133
133

8 Recursion

8.1
8.2
8.3
8.4

8.5
8.6

Properties for a Well-Behaved Recursion
Iteration versus Recursion

Relative Complexity of a Recursion
Examples of Single and Double
Recursion

Summary

Exercises

PART TWO: DATA STRUCTURES

9 Abstract Data Types

9.1
9.2
9.3
9.4

9.5

9.6

9.7
9.8

Counter ADT

General Properties of the Fraction ADT
Requirements for Class Fraction
Implementation Details for Selected
Methods in Class Fraction

Building a Fraction Laboratory to Test
Class Fraction

Documentation for Fraction — Generated
by javadoc

Summary

Exercises

10 cContainers as Abstract Data Types

11

10.1
10.2

10.3
10.4
10.5
10.6
10.7

The Container Hierarchy — Top Level
The Simplest Containers — Stack

and Queue

Supporting Interface and Classes

The Container Hierarchy

UML Description of Container Hierarchy
Summary

Exercises

Stack and Queue

11.1
11.2
11.3
114

11.5
11.6
11.7
11.8
11.9

The Stack

ArrayStack

LinkedStack

Comparing the Efficiency of ArrayStack
with LinkedStack

Queue

LinkedQueue

Stack/Queue Laboratory

Summary

Exercises

135

136
138
142

145
152
152

157

158
160
160

163

166

168
168
169

170
171

173
175
178
192
194
194

197

197
198
201

205
207
208
210
211
212

Contents

ix

x Contents

12 Application of Stack

13

12.1
12.2

12.3

12.4
12.5
12.6

Lists

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Algebraic Expression Evaluation
Algorithm for Converting from Infix
to Postfix Representation
Implementation of Algebraic Function
Evaluation

Function Evaluation Laboratory
Summary

Exercises

Dequeue — An Implementation of List
Positionable List

Vector List

Ordered List

List Laboratory

Stack and Queue Revisited
Summary

Exercises

14 Trees, Heaps, and Priority Queues

15

14.1
14.2
14.3
14.4
14.5

Trees

Heaps

Priority Queues
Summary
Exercises

Search Trees

15.1
15.2
15.3
154
15.5

15.6

15.7

15.8

15.9

15.10
15.11
15.12
15.13
15.14
15.15
15.16

Review of Search Table Abstraction
Binary Search Tree

Searching for an Element in a Search Tree
Balance of Search Tree

Adding an Element to a Binary Search
Tree

Removing an Element in a Binary Search
Tree

Method add for Binary Search Tree
Method remove for Binary Search Tree
Performance of Binary Search Tree

AVL Tree

Tree Rotation

AVL add

AVL Deletion

Splay Tree

Implementation of Class SplayTree

Skip List

214
214

216

218
225
225
226

227

227
240
249
252
256
258
259
260

263

263
283
300
312
313

315

315
316
317
318

320

320
322
323
330
330
331
333
340
342
344
348

15.17
15.18
15.19
15.20
15.21

Implementation of Skip List
Putting It All Together
Reusable Class DrawTree
Summary

Exercises

16 Hashing and Sets

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Hashing and Collision Resolution
Bit Operations

Perfect Hash Function

Collisions

Class Hashtable

Collision Resolution

Set

Summary

Exercises

17 Association and Dictionary

171
17.2
17.3
174
17.5
17.6

17.7
17.8
17.9

18 Sorting

18.1
18.2
18.3
184
18.5
18.6

The Association Abstract Data Type
The Dictionary Interface
Implementing the Dictionary Interface
The Dictionary Laboratory

The OrderedDictionary Interface
Implementing the OrderedDictionary
Interface

The Ordered Dictionary Laboratory
Summary

Exercises

Simple and Inefficient Sorting Algorithms
Efficient Sorting Algorithms

Binary Search

Sort Laboratory

Summary

Exercises

Appendix A Unified Modeling Language Notation

Al
A2

A3
A4
A5

Representing Classes in UML
Representing Relationships among
Classes in UML

Representing Packages in UML
Representing Objects in UML
Representing Interactions among
Objects in UML

349
356
359
364
364

367

367
369
371
373
375
378
386
392
393

395

395
399
402
413
415

418
422
424
424

427

427
430
434
434
435
435

437
437
439
441
442

442

Contents

Xi

Xii

Contents

Appendix B Complexity of Algorithms

Appendix C Installing and Using Foundations

Classes
C1 Installing the Foundations Classes
C.2 Using foundations.jar with the

Java 2 Platform
C.3 Using foundations.jar with JBuilder

Index

445

450
450

450
452

455

1

Cornerstones of OOP

The principles and practices of object-oriented software construction have evolved
since the 1960s. Object-oriented programming (OOP) is preoccupied with the ma-
nipulation of software objects. OOP is a way of thinking about problem solving
and a method of software organization and construction.

The concepts and ideas associated with object-oriented programming origi-
nated in Norway in the 1960s. A programming language called Simula developed
by Christian Nygaard and his associates at the University of Oslo is considered
the first object-oriented language. This language inspired significant thinking and
development work at Xerox PARC (Palo Alto Research Center) in the 1970s that
eventually led to the simple, rich, and powerful Smalltalk-80 programming lan-
guage and environment (released in 1980). Smalltalk, perhaps more than any pro-
gramming language before or after it, laid the foundation for object-oriented think-
ing and software construction. Smalltalk is considered a “pure” object-oriented
language. Actions can be invoked only through objects or classes (a class can be
considered an object in Smalltalk). The simple idea of sending messages to objects
and using this as the basis for software organization is directly attributable to
Smalltalk.

Seminal work on object-oriented programming was done in the mid-1980s in
connection with the Eiffel language. Bertrand Meyer in his classic book Object-
Oriented Software Construction (Prentice-Hall, 1988; Second Edition, 1997) set
forth subtle principles associated with OOP that are still viable and alive today.
The Eiffel programming language embodies many of these important principles
and, like Smalltalk, is considered a pure object-oriented language. Eiffel, with its
strong type checking (every object must have a type), is closer in structure to the
languages that we use today than to Smalltalk.

OOP was popularized by a hybrid language developed at AT&T Bell Labs in
the early 1980s, namely C++. This language evolved from the popular C language.
C++ evolved rapidly during the late 1980s. Because of this rapid evolution and
the need to retain a C-like syntax and backward compatibility with C, the syntax
of C++ has become arcane and complex. The language continued to grow in com-
plexity during the early 1990s before finally becoming standardized and is today
considered one of the most complex programming languages ever devised. It is a
hybrid language because one can invoke functions without classes or objects. In
fact most C programs (C is not an object-oriented language) will compile and run as
is using a C++ compiler. The hybrid nature of C++ makes it even more challenging

Cornerstones of OOP

to use since it allows a mixture of styles of software thinking and organization.
In order to use C++ effectively as an object-oriented language, the programmer
must impose rigorous constraints and style guidelines. Even with such discipline,
the C-like nature of C++ allows programmers to work around basic OOP rules
and principles such as encapsulation by using casts and pointers. The preoccu-
pation with pointers in C++ makes the language potentially dangerous for large
software projects because of the ever present specter of memory leakage (failure
to de-allocate storage for objects that are no longer needed).

The Java programming language invented in the mid 1990s at Sun Microsys-
tems and popularized in the late 1990s may be considered to be a third almost
pure object-oriented language. Like Smalltalk and Eiffel, actions may be invoked
only on objects and classes (except for a limited number of predefined operators
used with primitive types). Also like Smalltalk and Eiffel and unlike C++, Java
objects that are no longer needed are disposed of automatically using “garbage
collection.” The programmer is unburdened from having to devote time and effort
to this important concern. It might be argued that the presence of primitive types
in Java makes the language impure from an OOP perspective. Although this is
strictly true, the basic nature and character of Java is that of a pure object-oriented
language and we consider it such.

OOP got its popular start in Portland, Oregon in 1986 at the first Association for
Computing Machinery (ACM)-sponsored OOPSLA (object-oriented programming,
systems, languages, and applications) conference. At that time the first versions
of C++ and Eiffel had recently been released. The three most highly developed lan-
guages that were showcased at this first OOPSLA conference were Object Pascal,
Objective-C, and Smalltalk. The first release of the Java programming language
was ten years away.

During the early days of object-oriented programming, attention was focused
on the construction and development of OOP languages. Associated with these
newly emerging languages were problem-solving methodologies and notations to
support the software analysis and design processes. It was not until the late 1990s
that standardization of the object-oriented analysis and design notation occurred
with the Unified Modeling Language (UML).

The early application areas of OOP were the construction of libraries to support
graphical user interfaces (GUIs), databases, and simulation. These application
areas continue to provide fertile soil to support OOP development.

As we enter the twenty-first century, OOP has become widely accepted as a
mainstream paradigm for problem solving and software construction. Its use may
be found in a large number of application areas including compiler construction,
operating system development, numerical software, data structures, communica-
tion and network software, as well as many other application areas.

In the following sections we introduce some fundamental concepts of OOP.
Many of these concepts are elaborated on in later chapters of Part One.

1.1 Data Abstraction

The oldest cornerstone of OOP is the concept of data abstraction. This concept
pre-dates OOP.

1.3 Object

Data abstraction associates an underlying data type with a set of operations
that may be performed on the data type. It is not necessary for a user of the
data type to know how the type is represented (i.e., how the information in the
type is stored) but only how the information can be manipulated. As an example,
consider the notion of integer in a programming language. An integer is defined by
the operations that may be performed on it. These include the binary operations
of addition, subtraction, multiplication, and division as well as other well-known
operations. A programmer can use an integer type without any knowledge of how
it is internally stored or represented inside of the computer system. The internal
representation is not accessible to the user.

Data abstraction derives its strength from the separation between the opera-
tions that may be performed on the underlying data and the internal representa-
tion of these data. If the internal representation of the data should be changed,
as long as the operations on these data remain invariant, the software that uses
the data remains unaffected.

1.2 Encapsulation

The fusion of underlying data with a set of operations that define the data type
is called encapsulation. The internal representation of the data is encapsulated
(hidden) but can be manipulated by the specified operations.

1.3 Object

OOP is based on the notion of object. A software object represents an abstraction
of some reality. This reality may be a physical object but is more often an idea or
concept that may be represented by an internal state. As an example consider a
bouncing ball. If we were simulating the motion of the bouncing ball with software
we would model the ball as an object and its dynamic state as its height above the
surface on which it was bouncing. Here the software object represents a physical
object. As a more abstract example consider a cashier line at a supermarket. If
we were to represent the line as a software object, its internal state might be the
number of customers waiting to check out. Associated with the line would be a set
of behavioral rules. For example, the first customer to arrive would be the first
customer to be served. The last customer to arrive would be the last to be served.

OOQP is also based on the notion of sending messages to objects. Messages can
modify or return information about the internal state of an object. We can send
a line object the message addCustomer. This causes the internal state of the line
to change. We can send a ball object the message currentHeight. This returns the
ball’s height above the surface.

The behavior of an object is codified in a class description. The object is said
to be an instance of the class that describes its behavior. The class description
specifies the internal state of the object and defines the types of messages that
may be sent to all its instances. A class Queue might be defined to describe the
behavior of line objects.

In a program an object is a program variable associated with a class type. The
object encapsulates data. An object’s “value” or information content is given by its

Cornerstones of OOP

internal state. This internal state is defined in terms of one or more fields. Each
field holds a portion of the information content of the object. As indicated above,
an object can receive messages that either change the internal state (i.e., change
the value of one or more fields) or return information about the internal state
of the object. These messages represent the operations that may be performed on
the object.

1.4 Message

Messages are sent to or invoked on objects. In most object-oriented languages the
syntax used to accomplish this is given as follows:

someObject.someMessage

The object precedes the message since it is the recipient of the message. A “dot”
operator separates the object from the message. Reading from left to right places
the emphasis on the first entity, the object. A message may sometimes have one
or more parameters. For example,

line.addCustomer(joe)

Here the object line, an instance of class Queue, receives the message addCus-
tomer with joe as a parameter. The object joe is presumed to be an instance of class
Customer. Since a Queue object needs to hold other objects, in this case Customer
objects, the method addCustomer must take a Customer object as a parameter.

Messages can be cascaded. Suppose we wish to determine the last name of the
first customer in a line. The following expression might be appropriate:

line.first.lastName

Here line is assumed to be an instance of class Queue. The message first returns a
Customer object (the lead customer in the Queue). The message lastName returns
the last-name field of this lead customer. We are assuming that class Queue has a
method first that returns the lead customer. We are assuming that class Customer
has a method lastName that returns the last-name field.

1.5 Method

A method is a function or procedure that defines the action associated with a
message. It is given as part of a class description. When a message is invoked on
an object the details of the operation performed on the object are specified by the
corresponding method.

1.6 Class

1.6 Class

A class describes the behavior of objects, its instances. The external or “public”
view of a class describes the messages that may be sent to instances. Each possible
message is defined by a method. These include messages that affect the internal
state of the object and messages that return information about this internal state.
The internal or “private” view of a class describes the fields that hold the infor-
mation content of instances. In addition to fields, the private view of a class may
define private methods that are used to support public methods but cannot be
invoked outside of the class.

The user of a class is concerned only with the public or external view of the class.
The producer of a class is concerned with the public and private view. Chapter 3
describes the construction of Java classes in detail.

Let us consider a simple example to illustrate some of the ideas presented
above. Consider class Point. The “actions” that one may take on a point object
include:

setX(xValue)
setY(yValue)
x()
yO)

distanceFromOrigin()

Sk e

Note: We prefer to use a noun phrase rather than a verb phrase for a message
that returns internal information about an object. This is justified in Chapter 3.
The five external actions that have been defined for class Point are called acces-
sor methods. They allow us to set and get the values of the x and y coordinates of a
point object and get the distance of the point to the origin. The first two accessors,
setX and setY, require a parameter.
Listing 1.1 presents a full Java class definition for Point.

Listing 1.1 Class Point

/** Details of class Point

*/

public class Point {
/I Fields
private double x; /I X coordinate
private double y; /l'y coordinate

private double distance; // length of point

/I Methods

public void setX (double x) {
this.x = x;
updateDistance();

}

8 Cornerstones of OOP

public void setY (double y) {
this,y = vy;
updateDistance();

}

public double x () {
return x;

}

public double y () {
return y;

}

public double distanceFromOrigin () {
return distance;

}

/I Internal methods

private void updateDistance () {
distance = Math.sgrt(x*x + y*y);

}

As will be our practice throughout this book, class names and public features
shall be presented in boldface type. This highlights the external view of the class.

The three fields are designated with the private access specifier. This encapsu-
lates the information content. This content can be modified using only the meth-
ods setX and setY. When either of these methods are invoked, the distance field is
automatically updated and is available to the user with the method distanceFrom-
Origin.

If the fields information were not encapsulated, a user of class Point could
directly modify the x coordinate or y coordinate and forget to update the distance
field. Of course this quantity could be computed each time it is needed instead
of updated each time the x or y coordinate of the point object is modified. In
general, information about an object can be obtained either through storage (as
in Listing 1.1) or through computation.

1.7 Inheritance

Another cornerstone of OOP is inheritance. Inspired from biological modeling,
inheritance allows new classes to be constructed that inherit characteristics (fields
and methods) from ancestor classes while typically introducing more specialized
characteristics, new fields, or methods. A subclass is logically considered to be a
specialized version or extension of its parent and by inference its ancestor classes.

In Java, every object before its creation must be declared to be of a given
type, typically the class that the object is an instance of. This sometimes changes
in the presence of inheritance because of an important principal, the principal
of polymorphic substitution. This principal states that wherever an object of

1.7 Inheritance

a given type is needed in an expression, it may be substituted for by an object
that is a descendent of the given type. Although it may be difficult upon first
contemplation to fully appreciate the power and implications of this principal, it
is one of the most important and fundamental concepts in object-oriented software
construction.

Since polymorphic substitution states that a descendent class object may be
used in place of its ancestor object, the descendent class object must be considered
to be of the ancestor type. This makes sense. Consider a high-level class Vehicle
that encapsulates the properties of all vehicle objects. Now consider a more specific
class Bicycle with its unique behavior that represents a specialization of class
Vehicle. At the least, the methods of class Vehicle can be interpreted by class
Bicycle. Thus it makes sense that a Bicycle object can be used in place of a Vehicle
object (it will know how to respond to Vehicle messages). Clearly the opposite is
not true. A Vehicle object cannot be used in place of a Bicycle object since it will
not necessarily be able to respond to the specialized methods of class Bicycle. A
bicycle is a vehicle.

In general a subclass should logically satisfy the constraint that it can also be
considered to be of the parent class type. This is most fundamental. Regardless
of what other purpose one may wish to achieve in using inheritance, this logical
constraint should be satisfied. A TeddyBear class should not be construed to be
a subclass of Refrigerator. This constraint is often referred to as the “is a” or “is
kind of” relationship between subclass and parent. The subclass should satisfy
the logical condition that it “is kind of” an instance of its parent. This logical
constraint is sometimes referred to as behavioral inheritance. The subclass
enjoys the same behavioral characteristics as its parent in addition to the more
specialized behavior that distinguishes the subclass from the parent.

Another use of inheritance (some might argue “misuse”) is implementation
inheritance. Here the only purpose of creating a parent class is to factor code
that is needed by other subclasses. Since ancestor methods are generally inher-
ited by descendent classes (unless they are redefined in one or more descendent
classes), the descendent class can consider the ancestor method to be one of its
own. Although implementation inheritance makes it possible to reuse code, if the
logical constraints of behavioral inheritance (the “is kind of” relationship) are not
satisfied, the software architecture may become muddled and difficult to main-
tain. Often implementation inheritance flows as a natural and useful byproduct
from behavioral inheritance.

It is not the goal of this introductory section on inheritance to present all the
details of inheritance in Java. This is the goal of Chapter 4.

To clarify the above ideas, an example that illustrates the use of inheritance
is presented in this section without extensive detail. Consider a SpecializedPoint
class that extends the Point class presented in Listing 1.1.

SpecializedPoint Class

Suppose we wish to create a point class in which the x and y coordinates are
constrained to be positive. That is, we wish our SpecializedPoint objects to be
located in the first quadrant of the complex plane.

First we need to make small modifications to class Point, given in Listing 1.1.
The Modified Point class is given in Listing 1.2.

10 Cornerstones of OOP

Listing 1.2 Modified Point Class

/** Modified Point class
*/
public class Point {

/I Fields

protected double x;
protected double vy;
protected double distance;

/I Constructor

Point () {
setX(0);
setY(0);

}

Point (double x, double y) {
setX(x);
setY(y);

}

/I Methods

public void setX (double x) {

this.x = x;
updateDistance();

}

public void setY (double y) {

this.,y = vy;
updateDistance();

}

public double x () {
return x;

}

public double y () {
return vy;

}

public double distanceFromOrigin ()
return distance;

1

}

public String toString() {
return “< 7 4+ x + 47 +y + >"

}

/I Internal methods
protected void updateDistance ()
distance = Math.sgrt(x*x + y*y);
}
}

1.7 Inheritance

Brief Explanation of Listing 1.2

The access modifiers for the three fields are changed from private to protected.
This allows all subclasses to inherit these fields without changing the accessibility
of the fields in outside classes — encapsulation of internal information is preserved
while providing access to all descendent classes. If the fields were kept as private
as in Listing 1.1, the subclass SpecializedPoint would effectively have no fields
directly accessible. This violates the concept of behavioral inheritance in which a
subclass is a kind of its parent. In order for a SpecializedPoint object to be of type
Point, it must retain the three internal fields (i.e., have an x value, a y value, and
a distance value).

Two constructors are added to the class definition. As shall be explained further
in Chapter 3, a constructor is a function that always bears the name of its class and
is used to produce new instances of the given class. In Listing 1.1 no constructor
was provided. In this case Java provides a default constructor that initializes all
fields to zero (if they are scalar fields as in Listing 1.1) and null if the fields are
objects (reference types). This shall be explained in Chapter 2. Notice that the field
distance is automatically updated based on the values used in the two constructors
for fields x and y by invoking the setX and setY commands. This is an example of a
good object-oriented design principle in action. A consistent set of steps is followed
for setting the value of distance.

The method toString() is useful because it is automatically invoked whenever a
string representation of a Point is desired. This is useful when doing input/output
(I/O) as in the expression System.out.println(“pt = ” + pt), where pt is a Point
object. Here the “+” or concatenation operator causes the toString() method to
be automatically invoked, converting the pt object to a string object. Class String
and its important properties are discussed in Chapter 2.

Listing 1.3 Class SpecializedPoint

[** Details of a specialized Point class that extends class Point
*/
public class SpecializedPoint extends Point {

/I Constructor

SpecializedPoint () {
super(); // Invokes the parent class constructor

}

SpecializedPoint (double x, double y) {
super(x, Y);

}

/I Methods

public void setX (double x) { /I Redefined method
if (x < 0)

throw new UnsupportedOperationException(
“X must be greater than 0 ")

11

12

Cornerstones of OOP

else {
this.x = Xx;
updateDistance();
}
}

public void setY (double y) { /I Redefined method
if (y < 0)
throw new UnsupportedOperationException(
“y must be greater than O ")
else {
this,y = vy;
updateDistance();
}
}

Brief Explanation of Listing 1.3

The key word extends establishes that class SpecializedPoint is a subclass of
class Point. The methods setX and setY are redefined. Code is written to ensure
that the values of the parameters x and y are non-negative. If this is violated an
UnsupportedOperationException is generated. It is the responsibility of the caller
(the block of code that invokes the constructor or setX or setY) to ensure that x
and y are non-negative. This shall be explained in more detail in Chapter 4. All
other methods from class Point are inherited in class SpecializedPoint and may
be used as is.

Listing 1.4 presents a small test class that exercises some of the methods of
classes Point and SpecializedPoint.

Listing 1.4 Class PointTest

/** A test program that exercises classes Point and SpecializedPoint
*/
public class PointTest {

public static void main(String[] args) {
Point p = new Point (-3, -4);
SpecializedPoint spl = new SpecializedPoint ();
SpecializedPoint sp2 = new SpecializedPoint ();

spl.setX(3);
spl.setY(4);
System.out.printin(“spl =

+ spl);

1.9 Abstract Classes

sp2.setX(-3); // Should cause an exception to be generated
sp2.setY(4);
System.out.printin(“spl = "+ spl);
}
}

Brief Explanation of Listing 1.4

The code works fine and predictably until the method setX with parameter
—3 is invoked on the SpecializedPoint object sp2. This causes the Unsupported-
OperationException to be generated. Exceptions are discussed in Chapter 7. The
program output is:

spl = <3.0,4.0>

Exception in thread “main " java.lang.
UnsupportedOperationException: x

and y must be greater than 0

at SpecializedPoint.setX(SpecializedPoint.java:24)

at PointTest.main(PointTest.java:15)

1.8 Late Binding Polymorphism

Late binding is closely related to inheritance. Since methods may be redefined in
descendent classes (like methods setX and setY in Listing 1.3), it is common for
several specialized versions of a given method to exist in a class hierarchy, each
with the same method signature (same function name, same return type, and
same set of parameters). The runtime system is able to bind the correct version of
a method to an object based on the specific type of the object. This late binding is
an important characteristic of object-oriented systems. The word polymorphism
derives from “many forms.” In the case of OOP, many forms refer to the different
versions of a specific method defined in different subclasses. An example that
illustrates late binding is presented in the next section.

1.9 Abstract Classes

A class in which one or more methods are not implemented is defined as an ab-
stract class. A class in which all methods are implemented is a concrete class.
Abstract classes are often defined near the top of a hierarchical structure of classes.
Undefined or abstract methods are used in an abstract class to establish required
behavior in any descendent concrete class. An instance of an abstract class
cannot be created.

Since some methods in an abstract class may be fully implemented, the benefit
of implementation inheritance can be realized along with behavior inheritance.

We illustrate the concepts of abstract class and late binding by considering
skeletal portions of a small hierarchy of Vehicle classes. We employ UML notation
(see Appendix A) to represent the Vehicle hierarchy, shown in Figure 1.1.

Class Vehicle is shown as the root class in the hierarchy. Class Vehicle is ab-
stract. This implies that no instances of Vehicle can be constructed. The fields

13

14 Cornerstones of OOP

<<abstract>>
Vehicle
<<abstract>> <<abstract>> <<abstract>>
LandBased WaterBased Airborne
<<abstract>> f Boat <<abstract>> <<abstract>>
MotorVehicle <l °a Jet Propeller
Car Truck | | Motorcycle Boeing767 DC10 DC7
Racecar

Figure 1.1. UML diagram of Vehicle class hierarchy.

of Vehicle, if any, and all its methods, are inherited by every class in Figure
1.1. The fields and methods of Vehicle describe behavior and state common to
all subclasses of Vehicle (all vehicle types). The three immediate subclasses of
Vehicle — LandBased, WaterBased, and Airborne — are also abstract classes (no in-
stances can be constructed). More specialized characteristics (fields and methods)
for each of these vehicle types are defined. Under LandBased is the abstract class
MotorVehicle. There are three concrete subclasses of MotorVehicle: Car, Truck, and
Motorcycle. Each of these inherits the fields and methods defined in the abstract
classes MotorVehicle, Landbased, and Vehicle as well as introducing more special-
ized behavior. Class Racecar is shown as a subclass of Car. It inherits the fields
and methods of Car as well as introducing its own specialized behavior (additional
fields or methods).

What is the type associated with an instance of class Racecar? The answer:
Racecar, Car, MotorVehicle, LandBased, Vehicle, and Object (all classes inherit
from Object). Yes, a Racecar instance is of six distinct types. What does this mean
in practice?

Consider the following variable declaration:

Vehicle rc = new Racecar();

Here an object rc of formal type Vehicle is constructed of actual type Racecar.
The principle of polymorphic substitution discussed in Section 1.7 is utilized.
This allows an object of some descendent type to be substituted for the ances-
tor type.

