First published in 1982, Don Turcotte and Jerry Schubert’s Geodynamics became a classic textbook for several generations of students of geophysics and geology. In this second edition, the authors bring this classic text completely up-to-date. Important additions include a chapter on chemical geodynamics, an updated coverage of comparative planetology based on recent planetary missions, and a variety of other new topics. Geodynamics provides the fundamentals necessary for an understanding of the workings of the solid Earth. The Earth is a heat engine, with the source of the heat the decay of radioactive elements and the cooling of the Earth from its initial accretion. The work output includes earthquakes, volcanic eruptions, and mountain building. Geodynamics comprehensively explains these concepts in the context of the role of mantle convection and plate tectonics. Observations such as the Earth’s gravity field, surface heat flow, distribution of earthquakes, surface stresses and strains, and distribution of elements are discussed. The rheological behavior of the solid Earth, from an elastic solid to fracture to plastic deformation to fluid flow, is considered. Important inputs come from a comparison of the similarities and differences between the Earth, Venus, Mars, Mercury, and the Moon. An extensive set of student exercises is included.

This new edition of Geodynamics will once again prove to be a classic textbook for intermediate to advanced undergraduates and graduate students in geology, geophysics, and Earth science.
Donald L. Turcotte is Maxwell Upson Professor of Engineering, Department of Geological Sciences, Cornell University. In addition to this book, he is author or co-author of 3 books and 276 research papers, including Fractals and Chaos in Geology and Geophysics (Cambridge University Press, 1992 and 1997) and Mantle Convection in the Earth and Planets (with Gerald Schubert and Peter Olson; Cambridge University Press, 2001). Professor Turcotte is a Fellow of the American Geophysical Union, Honorary Fellow of the European Union of Geosciences, and Fellow of the Geological Society of America. He is the recipient of several medals, including the Day Medal of the Geological Society of America, the Wegener Medal of the European Union of Geosciences, the Whitten Medal of the American Geophysical Union, the Regents (New York State) Medal of Excellence, and Caltech’s Distinguished Alumnus Award. Professor Turcotte is a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

Gerald Schubert is a Professor in the Department of Earth and Space Sciences and the Institute of Geophysics and Planetary Physics at the University of California, Los Angeles. He is co-author with Donald Turcotte and Peter Olson of Mantle Convection in the Earth and Planets (Cambridge University Press, 2001), and author of over 400 research papers. He has participated in a number of NASA's planetary missions and has been on the editorial boards of many journals, including Icarus, Journal of Geophysical Research, Geophysical Research Letters, and Annual Reviews of Earth and Planetary Sciences. Professor Schubert is a Fellow of the American Geophysical Union and a recipient of the Union’s James B. MacElwane medal. He is a member of the American Academy of Arts and Sciences.
Contents

Preface xi
Preface to the Second Edition xiii

ONE. Plate Tectonics 1
1–1 Introduction 1
1–2 The Lithosphere 5
1–3 Accreting Plate Boundaries 6
1–4 Subduction 9
1–5 Transform Faults 13
1–6 Hotspots and Mantle Plumes 14
1–7 Continents 17
1–8 Palacomagnetism and the Motion of the Plates 22
1–9 Triple Junctions 35
1–10 The Wilson Cycle 38
1–11 Continental Collisions 41
1–12 Volcanism and Heat Flow 46
1–13 Seismicity and the State of Stress in the Lithosphere 49
1–14 The Driving Mechanism 54
1–15 Comparative Planetology 55
1–16 The Moon 56
1–17 Mercury 58
1–18 Mars 59
1–19 Phobos and Deimos 64
1–20 Venus 65
1–21 The Galilean Satellites 67

TWO. Stress and Strain in Solids 73
2–1 Introduction 73
2–2 Body Forces and Surface Forces 73
2–3 Stress in Two Dimensions 80
2–4 Stress in Three Dimensions 83
2–5 Pressures in the Deep Interiors of Planets 84
CONTENTS

2–6 Stress Measurement 85
2–7 Basic Ideas about Strain 87
2–8 Strain Measurements 94

THREE. Elasticity and Flexure 105
3–1 Introduction 105
3–2 Linear Elasticity 106
3–3 Uniaxial Stress 106
3–4 Uniaxial Strain 108
3–5 Plane Stress 109
3–6 Plane Strain 111
3–7 Pure Shear and Simple Shear 111
3–8 Isotropic Stress 112
3–9 Two-Dimensional Bending or Flexure of Plates 112
3–10 Bending of Plates under Applied Moments and Vertical Loads 116
3–11 Buckling of a Plate under a Horizontal Load 118
3–12 Deformation of Strata Overlying an Igneous Intrusion 119
3–13 Application to the Earth’s Lithosphere 121
3–14 Periodic Loading 122
3–15 Stability of the Earth’s Lithosphere under an End Load 123
3–16 Bending of the Elastic Lithosphere under the Loads of Island Chains 124
3–17 Bending of the Elastic Lithosphere at an Ocean Trench 127
3–18 Flexure and the Structure of Sedimentary Basins 129

FOUR. Heat Transfer 132
4–1 Introduction 132
4–2 Fourier’s Law of Heat Conduction 132
4–3 Measuring the Earth’s Surface Heat Flux 133
4–4 The Earth’s Surface Heat Flow 135
4–5 Heat Generation by the Decay of Radioactive Elements 136
4–6 One-Dimensional Steady Heat Conduction with Volumetric Heat Production 138
4–7 A Conduction Temperature Profile for the Mantle 140
4–8 Continental Geotherms 141
4–9 Radial Heat Conduction in a Sphere or Spherical Shell 144
4–10 Temperatures in the Moon 145
4–11 Steady Two- and Three-Dimensional Heat Conduction 146
4–12 Subsurface Temperature Due to Periodic Surface Temperature and Topography 147
4–13 One-Dimensional, Time-Dependent Heat Conduction 149
4–14 Periodic Heating of a Semi-Infinite Half-Space: Diurnal and Seasonal Changes in Subsurface Temperature 150
4–15 Instantaneous Heating or Cooling of a Semi-Infinite Half-Space 153
4–16 Cooling of the Oceanic Lithosphere 157
4–17 Plate Cooling Model of the Lithosphere 161
4–18 The Stefan Problem 162
4–19 Solidification of a Dike or Sill 166
4–20 The Heat Conduction Equation in a Moving Medium:
 Thermal Effects of Erosion and Sedimentation 168
4–21 One-Dimensional, Unsteady Heat Conduction in an Infinite Region 169
4–22 Thermal Stresses 171
4–23 Ocean Floor Topography 174
4–24 Changes in Sea Level 178
4–25 Thermal and Subidence History of Sedimentary Basins 179
4–26 Heating or Cooling a Semi-Infinite Half-Space by a Constant
 Surface Heat Flux 183
4–27 Frictional Heating on Faults: Island Arc Volcanism and Melting
 on the Surface of the Descending Slab 184
4–28 Mantle Geotherms and Adiabats 185
4–29 Thermal Structure of the Subducted Lithosphere 190
4–30 Culling Model for the Erosion and Deposition of Sediments 191

FIVE. Gravity 195
5–1 Introduction 195
5–2 Gravitational Acceleration External to the Rotationally
 Distorted Earth 195
5–3 Centrifugal Acceleration and the Acceleration of Gravity 200
5–4 The Gravitational Potential and the Geoid 201
5–5 Moments of Inertia 205
5–6 Surface Gravity Anomalies 207
5–7 Bouguer Gravity Formula 210
5–8 Reductions of Gravity Data 212
5–9 Compensation 213
5–10 The Gravity Field of a Periodic Mass Distribution on a Surface 213
5–11 Compensation Due to Lithospheric Flexure 214
5–12 Isostatic Geoid Anomalies 216
5–13 Compensation Models and Observed Geoid Anomalies 219
5–14 Forces Required to Maintain Topography and the Geoid 223

SIX. Fluid Mechanics 226
6–1 Introduction 226
6–2 One-Dimensional Channel Flows 226
6–3 Asthenospheric Counterflow 230
6–4 Pipe Flow 231
6–5 Artesian Aquifer Flows 233
6–6 Flow Through Volcanic Pipes 234
6–7 Conservation of Fluid in Two Dimensions 234
6–8 Elemental Force Balance in Two Dimensions 235
6–9 The Stream Function 237
6–10 Postglacial Rebound 238
6–11 Angle of Subduction 242
6–12 Diapirism 244
6–13 Folding 249
CONTENTS

6–14 Stokes Flow 254
6–15 Plume Heads and Tails 259
6–16 Pipe Flow with Heat Addition 262
6–17 Aquifer Model for Hot Springs 264
6–18 Thermal Convection 266
6–19 Linear Stability Analysis for the Onset of Thermal Convection in a Layer of Fluid Heated from Below 267
6–20 A Transient Boundary-Layer Theory for Finite-Amplitude Thermal Convection 272
6–21 A Steady-State Boundary-Layer Theory for Finite-Amplitude Thermal Convection 274
6–22 The Forces that Drive Plate Tectonics 280
6–23 Heating by Viscous Dissipation 283
6–24 Mantle Recycling and Mixing 285

SEVEN. Rock Rheology 292
7–1 Introduction 292
7–2 Elasticity 293
7–3 Diffusion Creep 300
7–4 Dislocation Creep 307
7–5 Shear Flows of Fluids with Temperature- and Stress-Dependent Rheologies 311
7–6 Mantle Rheology 318
7–7 Rheological Effects on Mantle Convection 323
7–8 Mantle Convection and the Cooling of the Earth 325
7–9 Crustal Rheology 327
7–10 Viscoelasticity 329
7–11 Elastic–Perfectly Plastic Behavior 333

EIGHT. Faulting 339
8–1 Introduction 339
8–2 Classification of Faults 339
8–3 Friction on Faults 341
8–4 Anderson Theory of Faulting 343
8–5 Strength Envelope 347
8–6 Thrust Sheets and Gravity Sliding 347
8–7 Earthquakes 350
8–8 San Andreas Fault 355
8–9 North Anatolian Fault 359
8–10 Some Elastic Solutions for Strike–Slip Faulting 361
8–11 Stress Diffusion 367
8–12 Thermally Activated Creep on Faults 368

NINE. Flows in Porous Media 374
9–1 Introduction 374
9–2 Darcy’s Law 374
9–3 Permeability Models 375
CONTENTS

9–4 Flow in Confined Aquifers 376
9–5 Flow in Unconfined Aquifers 378
9–6 Geometrical Form of Volcanoes 387
9–7 Equations of Conservation of Mass, Momentum, and Energy
 for Flow in Porous Media 390
9–8 One-Dimensional Advection of Heat in a Porous Medium 391
9–9 Thermal Convection in a Porous Layer 393
9–10 Thermal Plumes in Fluid-Saturated Porous Media 396
9–11 Porous Flow Model for Magma Migration 402
9–12 Two-Phase Convection 405

TEN. Chemical Geodynamics 410
10–1 Introduction 410
10–2 Radioactivity and Geochronology 411
10–3 Geochemical Reservoirs 415
10–4 A Two-Reservoir Model with Instantaneous
 Crustal Differentiation 417
10–5 Noble Gas Systems 423
10–6 Isotope Systematics of OIB 424

APPENDIX ONE. Symbols and Units 429
APPENDIX TWO. Physical Constants and Properties 433

Answers to Selected Problems 437
Index 441
Preface

This textbook deals with the fundamental physical processes necessary for an understanding of plate tectonics and a variety of geological phenomena. We believe that the appropriate title for this material is *geodynamics*. The contents of this textbook evolved from a series of courses given at Cornell University and UCLA to students with a wide range of backgrounds in geology, geophysics, physics, mathematics, chemistry, and engineering. The level of the students ranged from advanced undergraduate to graduate.

In all cases we present the material with a minimum of mathematical complexity. We have not introduced mathematical concepts unless they are essential to the understanding of physical principles. For example, our treatment of elasticity and fluid mechanics avoids the introduction or use of tensors. We do not believe that tensor notation is necessary for the understanding of these subjects or for most applications to geological problems. However, solving partial differential equations is an essential part of this textbook. Many geological problems involving heat conduction and solid and fluid mechanics require solutions of such classic partial differential equations as Laplace’s equation, Poisson’s equation, the biharmonic equation, and the diffusion equation. All these equations are derived from first principles in the geological contexts in which they are used. We provide elementary explanations for such important physical properties of matter as solid-state viscosity, thermal coefficient of expansion, specific heat, and permeability. Basic concepts involved in the studies of heat transfer, Newtonian and non-Newtonian fluid behavior, the bending of thin elastic plates, the mechanical behavior of faults, and the interpretation of gravity anomalies are emphasized. Thus it is expected that the student will develop a thorough understanding of such fundamental physical laws as Hooke’s law of elasticity, Fourier’s law of heat conduction, and Darcy’s law for fluid flow in porous media.

The problems are an integral part of this textbook. It is only through solving a substantial number of exercises that an adequate understanding of the underlying physical principles can be developed. Answers to selected problems are provided.

The first chapter reviews plate tectonics; its main purpose is to provide physics, chemistry, and engineering students with the geological background necessary to understand the applications considered throughout the rest of the textbook. We hope that the geology student can also benefit from this summary of numerous geological, seismological, and paleomagnetic observations. Since plate tectonics is a continuously evolving subject, this material may be subject to revision. Chapter 1 also briefly summarizes the geological and geophysical characteristics of the other planets and satellites of the solar system. Chapter 2 introduces the concepts of stress and strain and discusses the measurements of these quantities in the Earth’s crust. Chapter 3 presents the basic principles of linear elasticity. The bending of thin elastic plates is emphasized and is applied to problems involving the bending of the Earth’s lithosphere. Chapter 4 deals mainly with heat conduction and the application of this theory to temperatures in the continental crust and the continental and oceanic lithospheres. Heat transfer by convection is briefly discussed.
and applied to a determination of temperature in the Earth’s mantle. Surface heat flow measurements are reviewed and interpreted in terms of the theory. The sources of the Earth’s surface heat flow are discussed. Problems involving the solidification of magmas and extrusive lava flows are also treated. The basic principles involved in the interpretation of gravity measurements are given in Chapter 5. Fluid mechanics is studied in Chapter 6: problems involving mantle convection and postglacial rebound are emphasized. Chapter 7 deals with the rheology of rock or the manner in which it deforms or flows under applied forces. Fundamental processes are discussed from a microscopic point of view. The mechanical behavior of faults is discussed in Chapter 8 with particular attention being paid to observations of displacements along the San Andreas fault. Finally, Chapter 9 discusses the principles of fluid flow in porous media, a subject that finds application to hydrothermal circulations in the oceanic crust and in continental geothermal areas.

The contents of this textbook are intended to provide the material for a coherent one-year course. In order to accomplish this goal, some important aspects of geodynamics have had to be omitted. In particular, the fundamentals of seismology are not included. Thus the wave equation and its solutions are not discussed. Many seismic studies have provided important data relevant to geodynamic processes. Examples include (1) the radial distribution of density in the Earth as inferred from the radial profiles of seismic velocities, (2) important information on the locations of plate boundaries and the locations of descending plates at ocean trenches provided by accurate determinations of the epicenters of earthquakes, and (3) details of the structure of the continental crust obtained by seismic reflection profiling using artificially generated waves. An adequate treatment of seismology would have required a very considerable expansion of this textbook. Fortunately, there are a number of excellent textbooks on this subject.

A comprehensive study of the spatial and temporal variations of the Earth’s magnetic field is also considered to be outside the scope of this textbook. A short discussion of the Earth’s magnetic field relevant to paleomagnetic observations is given in Chapter 1. However, mechanisms for the generation of the Earth’s magnetic field are not considered.

In writing this textbook, several difficult decisions had to be made. One was the choice of units; we use SI units throughout. This system of units is defined in Appendix 1. We feel there is a strong trend toward the use of SI units in both geology and geophysics. We recognize, however, that many cgs units are widely used. Examples include μcal cm$^{-2}$ s$^{-1}$ for heat flow, kilobar for stress, and milligal for gravity anomalies. For this reason we have often included the equivalent cgs unit in parentheses after the SI unit, for example, MPa (kbar).

Another decision involved the referencing of original work. We do not believe that it is appropriate to include a large number of references in a basic textbook. We have credited those individuals making major contributions to the development of the theory of plate tectonics and continental drift in our brief discussion of the history of this subject in Chapter 1. We also provide references to data. At the end of each chapter a list of recommended reading is given. In many instances these are textbooks and reference books, but in some cases review papers are included. In each case the objective is to provide background material for the chapter or to extend its content.

Many of our colleagues have read all or parts of various drafts of this textbook. We acknowledge the contributions made by Jack Bird, Peter Bird, Muawia Barazangi, Allan Cox, Walter Elsasser, Robert Kay, Suzanne Kay, Mark Langseth, Bruce Marsh, Jay Melosh, John Rundle, Sean Solomon, David Stevenson, Ken Torrance, and David Yuen. We particularly wish to acknowledge the many contributions to our work made by Ron Oxburgh and the excellent manuscript preparation by Tanya Harter.
Preface to the Second Edition

As we prepared our revisions for this second edition of *Geodynamics* we were struck by the relatively few changes and additions that were required. The reason is clear: this textbook deals with fundamental physical processes that do not change. However, a number of new ideas and concepts have evolved and have been included where appropriate.

In revising the first chapter on plate tectonics we placed added emphasis on the concept of mantle plumes. In particular we discussed the association of plume heads with continental flood basalts. We extensively revised the sections on comparative planetology. We have learned new things about the Moon, and the giant impact hypothesis for its origin has won wide acceptance. For Venus, the Magellan mission has revolutionized our information about the planet. The high-resolution radar images, topography, and gravity data have provided new insights that emphasize the tremendous differences in structure and evolution between Venus and the Earth. Similarly, the Galileo mission has greatly enhanced our understanding of the Galilean satellites of Jupiter.

In Chapter 2 we introduce the crustal stretching model for the isostatic subsidence of sedimentary basins. This model provides a simple explanation for the formation of sedimentary basins. Space-based geodetic observations have revolutionized our understanding of surface strain fields associated with tectonics. We introduce the reader to satellite data obtained from the global positioning system (GPS) and synthetic-aperture radar interferometry (INSAR). In Chapter 4 we introduce the plate cooling model for the thermal structure of the oceanic lithosphere as a complement to the half-space cooling model. We also present in this chapter the Culling model for the diffusive erosion and deposition of sediments. In Chapter 5 we show how geoid anomalies are directly related to the forces required to maintain topography.

In Chapter 6 we combine a pipe-flow model with a Stokes-flow model in order to determine the structure and strength of plume heads and plume tails. The relationship between hotspot swells and the associated plume flux is also introduced. In addition to the steady-state boundary-layer model for the structure of mantle convection cells, we introduce a transient boundary-layer model for the stability of the lithosphere.

Finally, we conclude the book with a new Chapter 10 on chemical geodynamics. The concept of chemical geodynamics has evolved since the first edition was written. The object is to utilize geochemical data, particularly the isotope systematics of basalts, to infer mantle dynamics. Questions addressed include the homogeneity of the mantle, the fate of subducted lithosphere, and whether whole mantle convection or layered mantle convection is occurring.

The use of SI units is now firmly entrenched in geology and geophysics, and we use these units throughout the book. Since *Geodynamics* is meant to be a textbook, large numbers of references are inappropriate. However, we have included key references and references to sources of data in addition to recommended collateral reading.

In addition to the colleagues who we acknowledge in the preface to the first edition, we would like to add Claude Allegre, Louise Kellogg, David Kohlstedt, Bruce Malamud, Mark Parmentier, and David Sandwell. We also acknowledge the excellent manuscript preparation by Stacey Shirk and Judith Hohl, and figure preparation by Richard Sadakane.