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1 Introduction

1.1 What this monograph is about

Certain crystalline materials can exist in more than one solid phase, where a phase
is identified by a distinct crystal structure. Typically, one phase is preferred under
certain conditions of stress and temperature, while another is favored under dif-
ferent conditions. As the stress or temperature varies, the material may therefore
transform abruptly, from one phase to another, leading to a discontinuous change in
the properties of the body. Examples of such materials include the shape-memory
alloy NiTi, the ferroelectric alloy BaTiOs3, the ferromagnetic alloy FeNi and the
high-temperature superconducting ceramic alloy ErRh4By. In each of these exam-
ples the transition occurs without diffusion and one speaks of the transformation
as being martensitic (or displacive).

Alloys such as Au—47.5%Cd and Cu—15.3%Sn are known to have a cubic lattice
at high temperatures and an orthorhombic lattice at low temperatures. Therefore, if
such a material is subjected to thermal cycling, it will transform between these two
phases. Similarly, alloys such as Ni-36%Al and Fe—7%A1-2%C transform between
a high-temperature cubic phase and a low-temperature tetragonal phase, whereas
near-equiatomic NiTi has a high-temperature cubic phase and low-temperature
monoclinic phase.

If a stress-free single crystal of such a two-phase material is slowly cooled from
a sufficiently high temperature, it starts out in the high-temperature phase and at
first, merely undergoes a thermal contraction. However at some critical temperature,
denoted M, in the materials science literature', a portion of the lattice suddenly
transforms from the high-temperature structure to the low-temperature structure.
Most of the specimen is still in the high-temperature phase, but a small amount
is now in the low-temperature phase. The interface between the regions occupied
by the two phases is a “phase boundary.” As the temperature is further decreased,
the phase boundary propagates into the high-temperature phase, thus transforming

! The subscripts s and f denote “start” and “finish” respectively, whereas M and 4 denote martensite,
the low-temperature phase, and austenite, the high-temperature phase. So, for example, M is the
temperature at which the formation of martensite starts, etc.
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4 EVOLUTION OF PHASE TRANSITIONS
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Figure 1.1. Schematic depiction of a stress-free single crystal of a two-phase material at a sequence
of progressively decreasing temperatures.

it into the low-temperature phase as it crosses the moving front. Eventually, at
some temperature My, the entire specimen is in the low-temperature phase. Further
cooling simply causes thermal contraction of the low-temperature phase. This is
depicted in Figure 1.1 by the sequence of diagrams (a)— (b)—(c)—(d).

If the specimen is now gradually reheated, the reverse process takes place.
The high-temperature phase is nucleated at some temperature A, it grows by the
propagation of phase boundaries, and finally the entire specimen returns to the
high-temperature phase at a temperature 4 ;. Further heating simply causes thermal
expansion.

If during the aforementioned cooling—heating cycle one plots some represen-
tative linear dimension ¢ of the specimen versus the temperature ¢, one obtains
a hysteresis loop as shown schematically in Figure 1.2. The cooling portion of
the cycle corresponds to D — @ — @ — @ — (. Figure 1.1(a) corresponds
to the initial cooling segment (D) — @) — @) during which the entire specimen
is in the high-temperature phase. The low-temperature phase is nucleated at 3)
and grows from Q) — @ as the specimen evolves from (a)—(b)—(c)—(d) in
Figure 1.1. The transformation is complete at @ (Figure 1.1(d)) and thereafter
undergoes pure thermal contraction from @ — (5. The reverse transformation
B — @ — ® — @ — @ occurs during reheating.

If, instead of being stress free, the specimen was held at some constant nonzero
level of stress (in a suitable range) during the thermal cycling, one observes a similar
sequence of events but the quantitative details will be different. Likewise, if instead
of thermal loading, the specimen is subjected to a cyclic mechanical loading, one
again observes a qualitatively similar sequence of events. One can consider a wide
range of loading rates, either thermal or mechanical, with the associated response
ranging from quasistatic to inertia driven, and isothermal to adiabatic, and in each
case (provided one stays in a suitable range) one can induce forward and reverse
phase transitions, the detailed response depending on the specifics of the loading
conditions.

A conceptually helpful way in which to think about the modeling of a marten-
sitic phase transition using the continuum theory of finite thermoelasticity is as
follows: a general thermoelastic material is characterized by its free energy po-
tential y(F, 6), which is a function of the deformation gradient tensor F and the
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Figure 1.2. A schematic plot of a representative linear dimension ¢ of the specimen versus temperature
6 during a cycle of cooling and reheating. The specimen transforms between a high-temperature phase
and a low-temperature phase.

absolute temperature 6. The particular form of y(F, 6) corresponding to a given
material is determined by the microstructural details of that material. Consider a
given thermoelastic body at a temperature 6. Suppose that at this 6, the potential i
as a function of F has a local minimum at F = F*. Then, since the gradient of ¥/
with respect to F is essentially the stress, the pair (F*, 8) describes a homogeneous
stress-free equilibrium state of this body in the sense that if the entire body is ho-
mogeneously deformed by the deformation gradient tensor FT, and the temperature
is held at 6, then the body will be stress free and can therefore be maintained in
equilibrium without the application of any external loading.

If ¥ (-, 0) happens to have rwo local minima, say at F* and F~ as depicted
schematically in Figure 1.3(a), and if F™ and F~ do not differ by a rigid rotation,
then there are two distinct stress-free homogeneous equilibrium states (F*, 6) and
(F~, 0), either of which the body can occupy. Typically, each of these equilibrium
states is associated with a distinct phase of the material.

Under certain circumstances the two phases can coexist, with part of the body
being in the homogeneous stress-free equilibrium state (F*, ), and the remain-
der being in the homogeneous stress-free equilibrium state (F~, 6); the interface
separating these two parts of the body is a phase boundary. Since each part of the
body is stress free, this piecewise homogeneous configuration will be in mechanical
equilibrium without the application of any external loading.

If the values Y+ = ¥(F*, 0) and v~ = ¢ (F~, 0) of the free energy associated
with the two phases are equal, then a configuration that involves both phases is in
phase equilibrium as well as in mechanical equilibrium: each phase has the same
energy and therefore neither is preferred over the other. On the other hand if, for
example, ¥+ > ¥, as in Figure 1.3(a), then the phase associated with F~ is
the low-energy phase and is therefore energetically favored over the other phase.
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6 EVOLUTION OF PHASE TRANSITIONS

Phase boundary

Figure 1.3. (a) A schematic plot of the free energy v versus the deformation gradient F at a fixed
temperature, showing local minima at F = F™ and F = F~. (b) Two phases characterized by F* and F~
coexisting in a body, separated by a phase boundary.

There is now a “thermodynamic driving force,” which tends to transform the high-
energy phase “plus” into the low-energy phase “minus”. Accordingly, this driving
force makes it favorable for the phase boundary to move into the region associated
with F*, thereby transforming the high-energy phase into the low-energy phase as
it crosses the moving interface. The driving force vanishes in phase equilibrium.
How fast the phase boundary moves — the question of “kinetics” — is determined
by the microstructure underlying the two phases and the details of the mechanism
by which one lattice changes into the other.

In order to relate this discussion to the earlier one, we simply need to relate the
plus and minus phases here to what we previously called the high-temperature and
low-temperature phases. For example, if, as a function of the temperature 9, the
energies ¥ (FT, 0) and v (F~, ) are such that v = > 1~ for high temperatures and
Yt < ¢~ for low temperatures, then the minus phase is energetically preferred at
high temperatures and can therefore be identified with what we previously called
the high-temperature phase; similarly the plus phase can be identified with the
low-temperature phase.

Next, consider a stress-free body composed of two coexistent phases that are
in mechanical and phase equilibrium. If the body is now subjected to some stress,
this alters the relative favorability of the two phases and will, in principle, lead to
phase boundary motion. Similarly, this will happen if the temperature is changed.

It should be noted that in the phenomenological theory of thermoelasticity, if
one is simply given a potential ¢ with multiple local minima, one cannot say
much about the different phases associated with the different minima. They might,
for example, be associated with the liquid and gaseous phases of an elastic fluid,
two crystallographically distinct lattices of a crystalline solid, the disordered and
ordered states of a polymer, and so on. In order to physically identify the phases
one must consider the underlying microstructure.

This monograph explores in detail a number of the concepts referred to above.
We study questions related to the quasistatic and dynamic responses of an elas-
tic material characterized by a free energy potential with multiple local min-
ima. We pay particular attention to the notions of driving force and kinetics. The
driving force plays a central role in characterizing the dissipation rate during
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INTRODUCTION 7

time-dependent processes, and we make this notion rigorous under very general
circumstances and then specialize it to various particular cases. We address both
modeling and mathematical issues. For example on the modeling front, we cal-
culate an explicit free energy function i/ for a material with cubic and tetragonal
phases. We develop various models, both phenomenological and micromechan-
ical, of the transformation kinetics. And we solve a number of boundary-initial
value problems connected to experiments. On the mathematical front, we show
that quasistatic and dynamic problems for two-phase materials, when formulated
as in classical elasticity, suffer from a severe lack of uniqueness of solution to
boundary—initial value problems. We show that the degree of nonuniqueness is
precisely filled up by a proper description of the nucleation and kinetics of the
transformation.

This monograph is not meant to provide an encyclopedic treatment of phase
transitions. Rather, it simply collects together, and retells as a single story, the
results from a series of studies mostly by the present authors on the motion of phase
boundaries in solids.

1.2 Some experiments

The article by Schetky [45] provides a general introduction to the subject of marten-
sitic transformations while the book by Duerig et al. [ 18] describes many engineer-
ing applications. Comprehensive overviews of the materials science literature on
this subject can be found in Christian [14], Funakubo [25], and Otsuka and Wayman
[42] among others

Experiments that investigate the thermomechanical response of martensitic ma-
terials can, roughly, be grouped into three sets: uniaxial tensile loading experiments,
multiaxial loading experiments, and high-rate experiments.

There is an extensive experimental literature devoted to tensile loading and
unloading of bars made of martensitic materials; often, the materials studied are
technologically important shape-memory alloys such as NiTi. For a small sample
of this literature, see, for example, Gao and Brinson [26], Krishnan and Brown
[32], Nakanishi [39], Shaw and Kyriakides [46], and Leo et al. [36]. The loading
in such experiments is slow, in the sense that inertia is insignificant. Some of these
experiments are so slow that the process is essentially isothermal; but others, such
as those of Shaw and Kyriakides [46] and Leo et al. [36], are sufficiently fast that
the effects of local heating/cooling at the phase boundary become significant. The
objective of these experiments is typically to determine the relation between the
applied stress and the overall elongation of the bar, though in some studies such as
that of Shaw and Kyriakides [46], local strain and temperature measurements along
the length of the specimen are also made. The observed stress—elongation relation
exhibits hysteresis, and the phase transition represents the primary mechanism
responsible for this dissipative behavior. For a given material, the size and other
features of the hysteresis loop depend on the loading rate and the temperature at
which the test takes place.
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8 EVOLUTION OF PHASE TRANSITIONS

Investigations on the multiaxial loading of martensitic materials are not as nu-
merous. Among the comparatively few that do exist are the tension-torsion ex-
periments of Lim and McDowell [37] and the biaxial tensile loading experiments
of Chu and James [1, 15]. During a typical test, two stress components are pre-
scribed as functions of time and the response of the conjugate kinematic quantities
is measured, or vice versa, resulting, again, in a hysteretic response.

There is a large body of experimental literature describing the response of
solids to shock- or impact-loading. Much of it is motivated by questions concern-
ing the behavior of materials at extremely high pressures, as occurs, for exam-
ple, deep in the earth; see for example, Meyers [38]. In a typical experiment, a
specimen in the form of a cylindrical disk is subjected to a high-speed normal
impact on one of its plane faces. The collision generates a compressive distur-
bance that propagates into the disk, ultimately reaching the rear face of the tar-
get. Propagation speeds of the disturbances involved are measured, as are parti-
cle velocities at the rear face. Depending on the material, a phase transition may
occur, as, for example, in the case of the graphite-to-diamond transition studied
by Erskine and Nellis [20], or the austenite-to-martensite transition in CuAINi
studied by Escobar and Clifton [21]. One goal of such experiments is to deter-
mine the relation between the impact speed and the resulting speed of the phase
transformation.

Some of the aforementioned experiments have been carried out on polycrys-
talline specimens of the material, while others use single crystals. Experiments on
single crystals usually aim to understand the local processes associated with the
propagation of phase boundaries and to relate this to the macroscopic response, for
example, Chu and James [1, 15], Gao and Brinson [26].

In most martensitic materials, one does not observe a simple piecewise homoge-
neous deformation during phase transformation involving two homogeneously de-
formed phases separated by a planar phase boundary. Usually, the crystallographic
structure on one side of a phase boundary is more complicated than this. In some
cases, for example, In—22.73%T], one observes a homogeneously deformed high-
temperature phase separated by a planar phase boundary from a low-temperature
phase that has a “twinned” fine structure. Another common microstructure involves
awedge of the twinned low-temperature material surrounded by the homogeneously
deformed high-temperature phase, seen, for example, in Ni-36%Al. However there
do exist some exceptional materials, such as some of the titanium—tantalum alloys
studied by Bywater and Christian [13], which do exhibit simple piecewise ho-
mogeneous deformations during phase transformation. As will be illustrated in
Chapter 12, the ability to form an interface between the high-temperature and low-
temperature phases without twinning requires that the lattice parameters of the two
phases be related in special ways. It is conceivable that one could adjust the com-
position of a shape memory alloy so as to make the lattices satisfy these special
relationships, and therefore to make the material exhibit phase boundaries that do
not involve finely twinned structures.
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1.3 Continuum mechanics

In 1975, Ericksen [19] examined the equilibrium of an elastic bar composed of
a material with a nonmonotonic stress—strain relation. The strain-energy function
associated with this stress—strain relation had two local minima and could therefore
be used to describe a two-phase material. Following on this seminal paper, there
has been a vast amount of activity in the continuum mechanics community on the
modeling of solid—solid phase transitions.

Work on this subject can broadly be divided into two parts. One set of studies
has been focused on examining equilibrium states of a two-phase solid using energy
minimization as the underlying principle. The richness of this subject stems from
the fact that, as mentioned previously, observed microstructures can be quite com-
plicated. The low-temperature phase often involves a fine structure (“twinning”)
and in some cases even involves a fine structure within a fine structure. Under-
standing and modeling these complex microstructures has been a challenging and
rewarding subject. The recent book by Bhattacharya [10] and the earlier review
article by James and Hane [29] provide comprehensive discussions of the theory of
equilibrium microstructures.

The second set of studies concerns the time-dependent response of these ma-
terials corresponding to various mechanical and/or thermal loading processes. At
the microscale, the goal is to understand the evolution of the microstructures, while
at the macroscale one wishes to describe various aspects of the hysteretic macro-
scopic response. Internal-variable-based models have been developed and explored
by many investigators, for example, Brinson, Lagoudas, Miiller, and co-workers
(e.g. [12, 11, 8]). Phase field models have also been successfully used by others
including Fried, Khachaturyan, Voorhees, and co-workers, for example, [24, 9, 49].
Models that use viscosity to capture dissipation and a strain-gradient term to enable
propagation have been particularly popular and feature prominently in the work of,
for example, Shearer [47], Slemrod [48], and Truskinovsky [51].

Irrespective of the details of a specific material system, a hysteretic response
involves energy dissipation, and one of the fundamental questions pertains to how
one characterizes dissipation in a system where the primary source of dissipation
is phase transformation. Knowles and Sternberg [31] and Knowles [30] showed
that, much like a propagating shock wave in an inviscid compressible fluid, or a
propagating crack in an elastic solid, the strain discontinuity that occurs across a
propagating phase boundary can be a source of dissipation even in slow processes.
This, coupled with the basic notions of irreversible thermodynamics, leads one
to the notion of the “driving force” on a phase boundary — the primary agent
responsible for entropy production due to phase transformation; see Abeyaratne
and Knowles [2, 6], Heidug and Lehner [28], Truskinovsky [50]. It is related to the
general concept of configurational forces as developed by Gurtin [27], as well as
to notions introduced much earlier by Eshelby [22]. Thus, during the process of
phase transformation, there is a driving force on a phase boundary, and as material
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10 EVOLUTION OF PHASE TRANSITIONS

crosses this moving interface, it transforms from the high-energy phase to the low-
energy phase. The flux that is conjugate to this driving force is the rate at which
the material transforms, or equivalently, the (Lagrangian) speed of the interface.
The process of phase transformation, like any nonequilibrium process, is governed
by a kinetic law that relates the flux to the driving force and other appropriate
variables. Therefore in order to fully model the time evolution of a phase transition,
one must specify an elastic potential that characterizes each phase and a kinetic law
that characterizes the evolution of the phases. The detailed form of the kinetic law
depends on the microscale dynamic process by which one lattice transforms to the
other. Some preliminary efforts to derive kinetic models from lattice considerations
can be found in Abeyaratne and Vedantam [7], and Purohit [44].

1.4 Quasilinear systems

The second-order quasilinear system of partial differential equations

Bh(ul) _ 8“2 Buz_ 81/[1
ax o9t ax ot

for two unknowns u;(x, t), us(x, t) has been extensively studied in the applied
mathematics literature, for example [23]. This system arises in many physical con-
texts, for example, in gas dynamics, it describes the flow of a compressible inviscid
fluid in which case one identifies #; with mass density, u, with particle velocity,
and & (u) with the function characterizing the pressure—density relation of the gas.
Likewise, by identifying u; with strain, u, with particle velocity and /4 (u;) with the
function that describes the stress—strain relation of a solid, it can be used to describe
the dynamics of a nonlinearly elastic bar.

In gas dynamics, it is well known that the Cauchy problem for this system suffers
from nonuniqueness of solution, but that there is a unique weak solution that also
satisfies the associated entropy inequality. More generally, for any function /4 that is
either a strictly convex or a strictly concave function of #, the Cauchy problem for
this system can be shown to have at most one weak solution fulfilling a so-called
“admissibility criterion”, Oleinik [40]. On the other hand, when / is not strictly
convex or strictly concave, the Cauchy problem need not have a unique solution,
even with the entropy inequality in force, Dafermos [17].

The issue of selecting a unique solution to a quasilinear system in the case
where 4 is not a strictly convex or strictly concave function of u; has been ad-
dressed by many authors, usually by replacing the entropy inequality by a stronger
“admissibility criterion,” for example Dafermos [16], Lax [33], and LeFloch [35].
Among the most common such admissibility criteria are the viscosity criterion,
the viscosity—capillarity criterion, the entropy-rate admissibility criterion, and the
chord criterion, for example [43, 48, 16, 41].

The elastic bar considered by Ericksen [19] in his study of a two-phase material
can be described by a function % that, with increasing strain u, first increases,
then decreases, and finally increases again. Such a function /% is neither strictly
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convex nor strictly concave, and so the quasilinear system suffers from the lack
of uniqueness alluded to above, even with the entropy inequality in place. Rather
than replacing the entropy inequality with a “uniqueness-generating admissibility
criterion,” we take the point of view that the lack of uniqueness reflects a deficiency
in the physical model. The entropy inequality, being a statement of the second
law of thermodynamics, must be retained. Rather, additional information from the
physics of phase transformations needs to enter the mathematical model. Important
insight into the information that is lacking can be obtained if one can determine al//
solutions to the quasilinear system and organize them in some illuminating way.
We were able to do this explicitly in a special, algebraically simple case, [3], and
thereby conclude that the nonuniqueness arises for two distinct reasons: it pertains
to (i) the question of whether or not the motion involves a phase boundary and (ii)
if the motion does involve a phase boundary, then the indeterminacy of the phase
boundary speed. This suggests, exactly as the materials scientists would tell us,
that the quasilinear system must be supplemented with a “nucleation condition”
that addresses item (i) and a “kinetic relation” that addresses item (ii). In [3] we
demonstrate that the solution to the Riemann problem for this quasilinear system is
unique when the problem statement is supplemented in this way; see also LeFleeh
[34, 35]. Each of the previously mentioned admissibility criteria can be viewed as
corresponding to a particular (mathematical) kinetic relation, [4, 5], though deriving
the kinetic law from the underlying physics is largely an open question.

1.5 Outline of monograph

This monograph is organized into four informal sections. The first section consists
of Chapters 2—4 and introduces the main concepts of the subject within the sim-
plest possible setting, viz. a purely mechanical theory for a one-dimensional elastic
bar. The second section, consisting of Chapters 5-8, presents the general three-
dimensional theory including both mechanical and thermal effects. In Chapters
9-11, which form the third section, we specialize the general theory to one di-
mension and then study some specific thermomechanical initial-boundary-value
problems. In the final section of the monograph, Chapters 12—14, we consider
some three-dimensional problems.

The first and third sections both concern one-dimensional settings; the former
excludes thermal effects and the latter includes them. The second and fourth sections
both concern three-dimensional settings; the former concerns the general theory
and the latter concerns specific problems.

In slightly more detail, Chapter 2 sets out the purely mechanical theory for a one-
dimensional elastic bar, Chapter 3 examines static configurations and quasistatic
processes for it, and Chapter 4 examines a dynamic problem where inertial effects
are important. In Chapter 5, we discuss, within a general three-dimensional con-
text that includes both mechanical and thermal effects, a multiple-well Helmholtz
free energy potential; two specific examples, one concerning a van-der Waals fluid
and the other a martensitic material, are also presented. Chapter 6 is devoted to
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