

Microdevelopment

Transition Processes in Development and Learning

Microdevelopment is the process of change in abilities, knowledge, and understanding during short time-spans. This book presents a new process-oriented view of development and learning based on recent innovations in psychology research. Instead of characterizing abilities at different ages, researchers investigate processes of development and learning that evolve through time, and explain what enables progress in them. Four themes are highlighted: variability, mechanisms that create transitions to higher levels of knowledge, interrelations between changes in the short time scale of microdevelopment and the life-long scale of macrodevelopment, and the crucial effect of context. Learning and development are analyzed in and out of school, in the individual's activities and through social interaction, in relation to simple and complex problems, and in everyday behavior and novel tasks. With contributions from the foremost researchers in the field, *Microdevelopment* will be essential reading for all interested in cognitive and developmental science.

NIRA GRANOTT is an assistant professor at the School of Human Development, University of Texas at Dallas, and director of the Microdevelopmental Lab at the UT Dallas. She has worked as an educational software designer, producer of multimedia projects in educational television, and consultant for software design projects.

JIM PARZIALE is a part-time professor at the Graduate School of Education at the University of Massachusetts, Boston, and a classroom teacher and science resource teacher for Brookline Public Schools, Brookline, Massachusetts.

Cambridge Studies in Cognitive Perceptual Development

Series Editors Kurt W. Fischer, Harvard University, USA Giyoo Hatano, Keio University, Tokyo, Japan

Advisory Board
Gavin Bremner, Lancaster University, UK
Patricia M. Greenfield, University of California, Los Angeles, USA
Paul Harris, Harvard University, USA
Daniel Stern, University of Geneva, Switzerland

Esther Thelen, Indiana University, USA

The aim of this series is to provide a scholarly forum for current theoretical and empirical issues in cognitive and perceptual development. As the new century begins, the field is no longer dominated by monolithic theories. Contemporary explanations build on the combined influences of biological, cultural, contextual and ecological factors in well-defined research domains. In the field of cognitive development, cultural and situational factors are widely recognized as influencing the emergence and forms of reasoning in children. In perceptual development, the field has moved beyond the opposition of "innate" and "acquired" to suggest a continuous role for perception in the acquisition of knowledge. These approaches and issues will all be reflected in the series which will also address such important research themes as the indissociable link between perception and action in the developing motor system, the relationship between perceptual and cognitive development to modern ideas on the development of the brain, the significance of developmental processes themselves, dynamic systems theory, and contemporary work in the psychodynamic tradition, especially as it relates to the foundations of self-knowledge.

Forthcoming titles include

Heidi Keller, Ype H. Poortinga and Alex Schölmerich (eds.)

Between Biology and Culture: Perspectives on Ontogenetic Development

Published titles include

Jacqueline Nadel and George Butterworth (eds) Imitation in Infancy

Margaret Harris and Giyoo Hatano (eds)
Learning to Read and Write: a cross-linguistic perspective

Michael Siegal and Candida C. Peterson (eds) Children's Understanding of Biology and Health

Paul Light and Karen Littleton Social Processes in Children's Learning

Andrew N. Meltioff and Wolfgang Prinz (eds)

The Imitative Mind: Development Evolution and Brain Bases

Microdevelopment

Transition Processes in Development and Learning

edited by

Nira Granott and Jim Parziale

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, VIC 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Plantin 10/12 pt. System LaTeX $2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Microdevelopment: transition processes in development and learning / edited by Nira Granott & Jim Parziale.

p. cm. – (Cambridge studies in cognitive perceptual development)

Includes bibliographical references and index.

ISBN 0 521 66053 X

Child psychology.
 Developmental psychology.
 Child development.
 Granott, Nira, 1946

 II. Parziale, Jim. III. Series.

BF721.M533 2002

153.1'5 - dc21 2001043127

ISBN 0 521 66053 X hardback

Contents

List o	of figures	page v11	
List o	of tables	X	
List o	of contributors	xi	
	Microdevelopment: A process-oriented perspective for studying development and learning NIRA GRANOTT AND JIM PARZIALE	1	
Part	t I Variability		
	Microgenetic studies of self-explanation ROBERT S. SIEGLER	31	
	Microdevelopment and dynamic systems: Applications to infant motor development ESTHER THELEN AND DANIELA CORBETTA	59	
	Looking at the hands through time: A microgenetic perspective on learning and instruction SUSAN GOLDIN-MEADOW AND MARTHA WAGNER ALIBALI	80	
Part II Transition mechanisms			
	A multi-component system that constructs knowledge: Insights from microgenetic study DEANNA KUHN	109	
	Bridging to the unknown: A transition mechanism in learning and development NIRA GRANOTT, KURT W. FISCHER, AND JIM PARZIALE	131	
	Observing the dynamics of construction: Children buildin bridges and new ideas JIM PARZIALE	g 157	
		v	

vi Contents

Part III N	Micro- a	ınd macroc	levelopment
------------	----------	------------	-------------

7	Interacting time scales in personality (and cognitive) development: Intentions, emotions, and emergent forms MARC D. LEWIS	183
8	How microdevelopment creates macrodevelopment: Reiterated sequences, backward transitions, and the Zone of Current Development NIRA GRANOTT	213
9	Macro- and microdevelopmental research: Assumptions, research strategies, constraints, and utilities KANG LEE AND ANNETTE KARMILOFF-SMITH	243
Par	et IV Context	
10	Notebooks as windows on learning: The case of a science-into-ESL program ROCHEL GELMAN, LAURA ROMO, AND WENDY S. FRANCIS	269
11	Darwin's construction of the theory of evolution: Microdevelopment of explanations of variation and change in species KURT W. FISCHER AND ZHENG YAN	294
12	Developmental dynamics, intentional action, and fuzzy sets PAUL VAN GEERT	319
Aut	hor index	344
Sub	ject index	350

Figures

1.1	The staircase model	32
1.2	The overlapping waves model	34
1.3	Percent use of five types of explanations on the number	
	conservation task	35
1.4	Percent correct on pretest and training sessions of	
	number conservation task	41
1.5	Percent correct on pretest, training, and posttest	
	problems on mathematical equality task	47
1.6	Percent correct on posttest of mathematical equality	
	task on three types of problems: trained (C), near	
	generalization (B), and far generalization (D)	48
1.7	Decline in use of main incorrect strategy	
	(A + B + C strategy) during training session of	
	mathematical equality task	49
1.8	Increase in use of simplest correct strategy $(A + B)$	
	during training session of mathematical equality task	50
1.9	Increase in use during training session of mathematical	
	equality task of most advanced strategies	51
1.10	Solution times during training session of mathematical	
	equality task	52
2.1	Fluctuations in reaching patterning and spontaneous	
	interlimb activity in infant NQ during his first	
	year of life	70
2.2	Fluctuations in spontaneous interlimb activity in infant	
	NQ during his first year of life	71
3.1	Mean numbers of different strategies and gesture-speech	
	mismatches produced at each session in the long-term	
	microgenetic study without instruction	89
3.2	Mean numbers of different strategies and gesture-speech	
	mismatches produced at each session of the short-term	
	microgenetic study with and without instruction	91

vii

	T ' C C
V111	List of figures

3.3	The probability that a child will move to a consistent	
	incorrect, variable mismatching, or consistent correct	
	state, given that the child began the transition in a	
	variable mismatching or in a consistent incorrect state	92
3.4	Proportion of children who succeeded on both addition	
	and multiplication problems on the posttest, and who	
	maintained that success on the follow-up test, as a	
	function of the child's trajectory during training	94
3.5	Mean proportion of teacher reiterations of child's speech	
	when accompanied by a matching gesture, by no gesture,	
	or by a mismatching gesture, and teacher reiterations of	
	child's gesture when accompanied by mismatching speech	98
4.1	Developmental change as a shift in the frequency	
	distribution of strategies applied to a task	115
4.2	Performance feedback enhances meta-level understanding	116
	Phases and dimensions of knowledge acquisition activity	119
	The inquiry phase	119
	The analysis phase	120
	The inference phase	121
	Potential effects of collaboration on performance-level	
	and meta-level cognition	125
6.1	Task-solving system outline	158
	Alice and Ari's conversation levels	169
	A task-solving system	176
	Ordered fluctuations within a bounded range – a Zone	110
0.1	of Current Development (ZCD): Microdevelopmental	
	progress as a moving window that shifts up across time	220
8 2	Ann and Donald's activity: Incidental variability and	220
0.2	insubstantial progress?	225
0 2	Reiteration of sequences in Ann and Donald's activity:	223
0.5	Each sequence involved a change in the problem's	
		226
0.4	parameters and started with an initial backward transition Ordered fluctuations: The ZCD in Marvin and Kevin's	220
8.4		220
o -	activity	230
8.5	Ann and Donald break through their ZCD: A stabilizing	
	backward transition following an exaggerated leap	232
9.1	Three types of developmental changes: Cumulative	
	change, re-organizational change, and self-organizational	
	change	247
10.1	Redrawn examples of the kind of notebook records that	
	Students A and B made for the experiments they did to	
	accompany their reading	277

	List of figures	ix
10.2	A redrawn example of a notebook entry for a given	
	review session	278
10.3	Eight individuals' learning curves for percentage of complex	
	sentences as a function of review unit	280
10.4	The learning curve that results when the individual data	
	points in figure 10.3 are averaged	290
11.1	Developmental range for abstract skills	298
	Learning a statistics operation	300
11.3	Development of Darwin's theory of evolution	
	(1831–1839): A general overview	304
12.1	Degree of characteristicness of an assumed true score	
	and scores with assumed measurement error	322
12.2	A score specified as a range with varying degrees of	
	characteristicness	324
12.3	Bimodal score ranges	325
12.4	Score ranges map differentially on to linguistic categories	326
12.5	Scores map differentially on to various linguistic categories	327
12.6	An imaginary score distribution of an underachieving	
	student	332
12.7	Longitudinal data from van der Maas' conservation	
	study (1993)	334
12.8	Scores on a criterion variable map differentially on to a	
	degree of applicability of the statement "Linguistic	
	rule x is present"	335
12.9	Weekly observations of cry duration in a child aged	
	between two and sixty-three weeks	338
12.10	Maximum, minimum, and percentile ranges of cry	
	duration in an infant during the first sixty-four weeks	339
12.11	Maximum and minimum ranges of pronomina use	
	in Peter and Abel	340

Tables

6.1	Shifts of focus as a percentage of the task-related	
	comments	page 168
6.2	Number of shifts of focus in the first ten minutes	
	compared to the last ten minutes	168
6.3	Maximum levels reached by student group	175
7.1	Three interacting time scales in personality	
	development, showing hypothesized neurobiological	
	and psychological mechanisms	194
10.1	Concept specificity coding system and examples	281
10.2	Average proportion (standard deviation) of sentences	
	at each concept specificity level	283
10.3	Examples of specific "why" and "how" questions asked	
	by students (corrected for spelling and simple grammar)	286
10.4	Correlations among the five main concept and language	
	variables across students	288

X

Contributors

Martha Wagner Alibali, Department of Psychology, University of Wisconsin-Madison

Daniela Corbetta, Department of HKLS & Department of Psychological Sciences, Purdue University

Kurt W. Fischer, Harvard Graduate School of Education

Wendy S. Francis, Department of Psychology, University of Texas at El Paso, El Paso

Rochel Gelman, Psychology and Cognitive Science, Rutgers University

Susan Goldin-Meadow, Department of Psychology, University of Chicago

Nira Granott, School of Human Development, University of Texas at Dallas

Annette Karmiloff-Smith, Neurocognitive Development Unit, University College London

Deanna Kuhn, Teachers College, Columbia University

Kang Lee, Department of Psychology, Queen's University, Kingston

Marc D. Lewis, Department of Human Development and Applied Psychology, Ontario Institute for Studies in Education, University of Toronto

Jim Parziale, University of Massachusetts at Boston

Laura Romo University of California Los Angeles

Robert S. Siegler, Department of Psychology, Carnegie Mellon University

Esther Thelen, Department of Psychology, Indiana University

Paul van Geert, Department of Psychology, University of Groningen

Zheng Yan, Harvard Graduate School of Education

хi