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Locality and the Hardy theorem

ARTHUR FINE

But this conclusion [nonlocality ] needs careful discussion in order to
clarify what is going on. (Redhead 1987, p. 3)

Within the foundations of physics in recent years, Bell’s theorem has
played the role of what Thomas Kuhn calls a ‘paradigm’: that is, an
exemplary piece of work that others learn from, imitate and develop.
Following a period of articulation and consolidation, the first generation
of developments of the Bell theorem was initiated by Heywood and
Redhead (1983). They produced a nonlocality result in the algebraic
style of the Bell-Kochen—Specker theorem (Bell 1966; Kochen and
Specker 1967), moving away from the probabilistic relations characteristic
of the Bell theorems proper. More recently a second generation develops
results by Peres (1990), Greenberger—Horne—Zeilinger (1990), and Hardy
(1993). In addition to moving away from probabilities, this generation tries
to dispense with the limiting inequalities of the Bell theorem to yield so-
called ‘Bell theorems without inequalities’. With respect to probabilities,
however, Hardy is a half-way house. It requires no inequalities but the
result contradicts quantum mechanics under certain locality assumptions
only if the statistical predictions of quantum mechanics hold in at least
one case.

I want to examine the Hardy theorem and its interpretation. Initially, I
intend to ignore respects in which it dispenses with probabilities because
I want to point out the interesting significance of the theorem in a prob-
abilistic context. We will see that when probabilities are restored, so are
inequalities. Then we will see what the theorem has to contribute on the
topic of locality.
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1. Then Hardy example

According to Hardy, almost all the entangled states for a pair of systems
give rise to a simple sort of Bell theorem. For our purposes a generic version
of this will do." So suppose we have a pair of systems whose state spaces are
two dimensional (one can think of spin-1/2 systems, for instance), system I
whose state space has orthonormal basis «, o and system II with orthonor-
mal basis 8, 7. Denote by LC(...) a non-degenerate linear combination (that
is, one with non-zero coefficients) of the enclosed terms. Let ¥ be the state
of the combined (I+1I) system. We will suppose that

Y=LCae®rt,0QB,0R1). (1la)
Collecting the terms, first in T and then in o, we get
Y =LCl' ®t,0Rp) (1b)
and
Y=1LCa®1t,0QB) (Ic)

respectively, where o’ = LC(a, 0) and B8’ = LC(B, 7). Adding (1b) and (1¢)
and dividing by 2 yields

Y=1LCe'®1,0R8,0QB,aR1). (1d)

We can now read off various probabilistic statements from the form of
these different representations of the joint state. For that purpose, let
A=Py,B=Py, A'=1— P,y and B’ =1 — Pj. Note that the relation
between o and A is not the same as that between o’ and A’. Since there is no
a @ B term in eqn la the result of projecting ¥ onto the o Q) B-space is null.
Hence, where P?(.) is the quantum probability in state ¥, and writing
PY(AB) for PY(4=1 & B=1) - and so forth —

PY(4B) = 0. (22)

From eqn 1b, the result of projecting ¥ orthogonally to «’ in the I-space
leaves system II in state 8, hence

P¥(Bl4") = 1. (2b)

Similarly, from eqn lc,

' The presentation below draws on Hardy’s original (1993) and on the variant in Goldstein
(1994). To map Hardy’s discussion (U;, D;) onto my set U;, U, <> A, Band D,, D, <> A', B’'.
The U; are the same for Goldstein and his W, W, correspond (respectively) to my 7 — A,
I—-B.
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PY(4|B) = 1. (2¢)

From eqn 1d, since neither < alo’ > nor < B|B’ > is zero, the result of
projecting ¥ so as to be orthogonal both to « in the I-space and to B’ in
the II-space is not null. Hence,

PY(4'B’) +0. (2d)

In eqn la the three-termed linear combination has non-zero coefficients
the square of whose norms sum to 1, so
|<P0e®t> "+ <Plo@®B>*<1. That is, PY(4)+P*B)<]1.
From eqn 2b, P¥(4’) < P¥(B). Adding P¥(4) to both sides yields

PY(A)+PT(4) < 1. (2e)
Similarly from eqn 2¢c, P¥(B’) < P¥(4), which yields
PYB)+ PY(B) < 1. (2f)

Extracting from the 0 to | probabilities, but using entirely similar reason-
ing about the geometry of the state space, the first three inferences of this
series — eqns 2a, b, ¢ — are the same as those drawn by Hardy. That is,
talking about the values of quantities rather than probabilities for observing
these values, he says that in state ¥, AB =0, that (4’ = 1) = (B=1), and
that (B’ = 1) = (4 = 1). Hardy then draws the probabilistic conclusion 2d
and urges that since local realism would sanction talk about locally
possessed values it would lead instead to the conclusion that 4A'B" = 0.
Hence he infers that a single 4’, B’ measurement confirming the statistical
prediction 2d would contradict local realism. Retaining the probabilities, the
crux of the Hardy result would be a contradiction among eqns 2a, b, ¢, d
that arises in the context of local hidden variables.

2. Random variables

The Bell inequalities have a purely probabilistic content as conditions gov-
erning whether a given set of probability distributions can be represented as
the distributions of random variables. Given four pair distributions P43,
P4, Pyp, Pyp (say, on 0 and 1) with compatible singles P, Pg, P4, Py
(that is where the same marginal distribution P, comes from P, 5 and P4y,
and so on) we can ask whether these fit together as the marginals of some
four-distribution P4, pp. Equivalently, we can ask whether there are ran-
dom variables 4, A’, B and B’ all defined on some common space whose
single and joint distributions match the given singles and joints. Writing
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P(AB) for P,p(1,1) — and so forth — necessary and sufficient for this is the
satisfaction of the generalized Bell inequalities:

—1 < P(A4'B')+ P(A'B) + P(AB') — P(AB) — P(4') — P(B') <0. (GB)

Interchanging first 4 with 4’ then B with B” and finally both together yields
a total of eight inequalities, which constitute the required necessary and
sufficient conditions (Fine 1982a, b).

The connection with local hidden variables (or ‘local realism’) is just that
a typical EPR-type correlation experiment (Einstein, Podolsky & Rosen
1935) yields pair distributions and compatible singles for quantum observa-
bles as above, where 4, A’ are noncommuting observables defined in one
wing of the experiment and B, B’ in the other. A local hidden variables
model provides a way of representing those observables as random variables
over a common space. In particular, locality is what justifies saying — for
example — that A(x), the value of 4 at ‘hidden state’ x, is well defined
without regard to other observables, their values or measurements.
Similarly for the probabilities represented by the P(.) distribution. Thus
the random variables framework codifies the idea that in a given state ¥
there are determinate values for the observables that do not depend on
distant measurements and that are distributed according to definite prob-
abilistic laws. As I will suggest below (section 4), I believe that standard uses
of this framework employ principles beyond locality. Still, it is a clean and
perspicuous way of treating locality conditions, a way that disentangles
the discussion from murky ‘elements of reality’ and potentially misleading
counterfactual reasoning (‘If instead of measuring 4" we had measured A4
then ... and also if instead of measuring B" we had measured B then, ... .").
If we accept the standard framework, we can say that the (GB) inequalities
provide the necessary and sufficient conditions for the existence of a local
hidden variables model for a 2-by-2 EPR experiment.

Typically such an experiment works with imperfect correlations; that is,
with joint probabilities neither 0 nor 1. We can ask, however, what would
happen in the case where some one-way correlations are strict. Suppose, for
instance, that measuring 4’ determined the outcome at B and that measur-
ing B’ determined the A outcome. That is, suppose, that the conditional
probabilities P(B|A") and P(A|B’) were both 1, as in the Hardy example.
The following theorem characterizes this situation.

Theorem. If P(B|A’) = P(A|B’) = 1, then the pair distributions Pz, P4 5,
P,p, Pyp, (on 0 and 1) with compatible singles P4, Py, P4, Pp are the
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distributions of random variables 4, A’, B and B’ on some common space
iff the following four conditions hold:

() P(A'B') < P(AB)

(i) P(A’ or B') < P(A or B)

(ii1) [P(A) — P(AB)] + [P(A") — P(A'B")]
(iv) [P(B) — P(AB)] + [P(B') — P(A'B")]

1
1.

=
=<

The theorem follows from the corresponding theorem for (GB) if we use
conditions  equivalent to P(B|A') = P(A|B’)=1; namely, that
P(A'B)=P(A’) and P(AB’) = P(B’). Indeed (i) is equivalent to the
right side of (GB) under these assumptions. The Bell inequality
P(AB) + P(A'B) + P(AB’) — P(A'B") < P(A)+ P(B) is equivalent to
(ii), that is, to P(A")+ P(B')— P(A'B") < P(A) + P(B) — P(AB). For
(iii) the equivalent inequality is P(4)+ P(B') —1 < P(AB) +P(A'B’)
+P(AB’) — P(A'B). Interchanging A with 4" and B with B’ here yields,
finally, the Bell inequality equivalent to (iv). Nothing new corresponds
to the remaining four (GB) inequalities, each of which already follows
from the stated conditions on the pair distributions.

We can now impose more structure, in particular the anti-correlations,
P(AB) = 0, in the Hardy example.

Corollary 1. If P(AB) =0, then the necessary and sufficient conditions
reduce to

(a) P(A'B)=0

(b) max[P(A4) + P(A"), P(B)+ P(B")] < 1

Given that P(A4B) =0 and 0 < P(4'B’), condition (i) holds iff (a) does.
Similarly (b) is equivalent to (iii) and (iv). Finally by virtue of (a), (ii)
automatically holds iff P(4B) = 0 since the assumptions of strict one-way
correlation, that P(A'B= P(A") and P(AB')= P(B’), imply that
P(A") < P(B) and that P(B') < P(A).

Corollary 2. If P(AB) =0 and max[P(4) + P(4"), P(B) + P(B")] < 1, then
P(A'B") =0 or, equivalently, P(4'B") < P(AB)

is both necessary and sufficient for a random variables representation of the
given joints and singles with strict correlations, P(B|4’) = P(4|B’) = 1.
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3. The Hardy theorem

If we identify the quantum joints in the Hardy example with these distribu-
tions of random variables, all the requirements of corollary 2 are satisfied.
From eqn 2a, P(AB) =0. From eqn 2b, ¢, P(B|A") = P(4|B’) = 1. From
eqn 2e, f, max[P(4) + P(A"), P(B) + P(B")] < 1. The condition P(4'B") =0
that fails, according to eqn 2d, then, is precisely the condition whose satis-
faction is both necessary and sufficient for a local hidden variables model of
these probabilities. Thus for the Hardy case the equation P(4'B") =0 (or
the inequality P(4’'B’) < P(AB)) plays exactly the same role as do the (GB)
inequalities for EPR in general. Although strict one-way correlations greatly
simplify the reasoning, like Bell, Hardy has put his finger on precisely the
central condition that makes local hidden variables possible for the case at
hand.

Also, like the Bell theorem, the ‘Hardy theorem’ can be characterized as
having two parts. One is a demonstration of a necessary condition for a
hidden variables model. The second is the production of a generic example
where that condition fails quantum mechanically. We can take

if P(B|A") = P(A|B') = 1 then P(4'B) < P(AB)

for part (1). Then part (2) consists of the eqns 2b, c satisfying the ‘if* clause
and eqns 2a, d violating the consequent. Alternatively, we can take

if P(B|A") = P(A|B) = 1 and P(AB) =0, then P(4'B’) =0

for part (1). Then eqns 2a, b, c satisfy the ‘if” clause and eqn 2d violates the
consequent.

We might call the first version the Hardy theorem ‘with inequalities’ and
the second the Hardy theorem ‘without inequalities’. Logically speaking,
they are equivalent. Both versions identify the joint probabilities P(..) that
govern random variables with the quantum joint probabilities P¥(..) of the
associated quantum observables. Indeed, it is that identification that makes
part (2) of the theorem possible.

We can isolate what makes these versions equivalent. It is simply the
probabilistic identity

P(A'B") = P(A'B'AB) 3)

that must hold if all four variables are simultaneously representable. From
eqn 3 it obviously follows that P(4'B’) < P(AB) and also that P(4'B") =0
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if P(AB)=0. To see why eqn 3 holds note that in a random variables
representation P(4'B’) is the marginal of a four-distribution as follows,

P(A'B'Y = P(A'B'AB)+ P(A'B'AB) + P(A'B'AB)+ P(A'B'AB)  (4)

(where the bar means that the variable underneath takes the value 0). Since
P(A|A") = P(A|B") =1 iff P(AB") = P(A'B) =0, all but the first term of
eqn 4 vanishes — to produce eqn 3.

4. Probabilities and locality

Fans of the Hardy theorem may not be happy with my presentation of that
result, even though it highlights the importance of the contradictory condi-
tion picked out by Hardy. My version is probabilistic and it depends criti-
cally on probabilistic reasoning and inequalities and, moreover, on the
identification of quantum joint probabilities with random variable joints.
How much simpler just to state that if (4'=1)=(B=1) and
(B'=1)=(4=1), then if AB=0, so too A’B’ =0. This is simpler, to
be sure, in terms of reasoning to the conclusion, but not in terms of inter-
preting the quantum theory. For, like my presentation, the quantum theory
is also probabilistic and to move from those probabilities to statements
about values of quantities requires imposing an interpretive structure.
Since the ‘simple’ inference does not hold in the quantum mechanical
Hardy example, clearly his interpretative structure goes beyond the usual
reading of the quantum probabilities in terms of likely outcomes of mea-
surements. Of course it is supposed to do just that since the interpretation is
supposed to require locality, in order to contradict it. We shall see, however,
that it does more.

We can see exactly what the reading in terms of possessed values does
require; namely, the principle that where the quantum joint probability is
zero, as in eqn 2a, the observables in question do not both take the
0-probability values; that is, that either 4 # 1 or B # 1 in the case of eqn
2a. While this may seem like a harmless and modest principle, it is not.
Years ago I showed that this principle is equivalent to the general
Kochen—Specker functional condition: f(Q)(x) = f[Q(x)] (Fine 1974). The
connection is easy to see, for in any state ¥ and for any observable Q,
PY(0 = q&f(0) # f(¢g)) = 0. So, the principle implies that Q(x) = ¢ only
if f(Q)(x) =f(q); that is, that f(Q)(x) = f[Q(x)]. This general functional
condition, in turn, is equivalent to the product and sum rules: that the
value possessed by the product of two observables (or their sum) is just
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obtained by multiplying (respectively, adding) the values possessed by the
individual observables.> Even apart from locality considerations these rules
are already inconsistent with the quantum theory. So the seemingly modest
interpretive principle that governs the ‘simple’ form of the Hardy theorem is
not at all harmless; indeed it is inconsistent with the quantum theory. The
inconsistency runs deep and derives from how the basic framework of ran-
dom variables is used.
The principle

where P*(4=q& B=r)=0, then A #qor B#r (5a)

is in fact equivalent to the assumption about the random variables frame-
work used in the two probabilistic versions of the Hardy theorem in section
3, that the joint probabilities of that framework match the quantum joints
for observables where the latter are defined.’ If it is locality that concerns us,
this is not an assumption we need to make. For we can use the locality
automatically built into the random variables framework — that values
and probabilities are determinate and independent of distant measurements
— and still entirely avoid this assumption on joint probabilities. Here is how.
In a given state ¥, make the usual association for a hidden variables con-
struction between quantum observables and random variables. For each
single observable this returns the quantum probabilities as the distribution
of the associated random variable. To get joint probabilities where they are
defined quantum mechanically (that is, for commuting observables) do not
go to the (well-defined) joint distributions of the associated random vari-
ables. That would just re-instate the above principle. Instead, use the quan-
tum mechanical identity

P'(A=q& B=r)=P"(x,(Ax.(B)=1) (5b)

where x(.) is the characteristic function (that is, x,(x) =1 for x = ¢ and 0
otherwise). The product observable x,(4)x,(B) will correspond to some
random variable, say C, whose distribution is quantum mechanical. If we
assign the quantum joint probabilities by identifying P(C = 1) with the right

The equivalence also requires the rule (‘spectrum rule’) that the only possible values assigned
to an observable in a state are those with non-zero probability in that state. I assume this in
the discussions below.

Fine (1974, pp. 261-4) shows the equivalence between the product rule and this assumption
on joint distributions, given the spectrum rule of note 2. The claim in the text follows from
that.
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side of eqn 5b and then reading eqn 5b from right to left, they will be
correct.

The preceding construction is neither pretty nor simple. But it shows
something. It shows that the Hardy theorem, whether in the probabilistic
versions explored in section 3 or in the apparently simpler version about
possessed values, depends on more than locality. It depends, in addition,
on a tacit requirement for how to deploy the framework of random vari-
ables in building a hidden variables model: namely, that we should employ
the joint distribution structure of the random variables and demand that
where applicable it match the quantum joints. If you think about it, how-
ever, this requirement is not really compelling, since we know in advance
that the match can at best be partial. For all pairs of random variables
have joint distribution but only some pairs of the quantum observable do.
Thus any deployment of random variables necessarily involves excess
structure.

The preceding construction shows something else too. It shows how to
build a local hidden variables model for the Hardy example. All we need
do is to make the suggested construction in the given state ¥ for the
observables A, A’, B, B, AB, AB', A'B, A'B’, I — A and I— B,
A'(I — B) and (I — A)B. This will give a possessed value to each observa-
ble and probabilities that match those of quantum mechanics, as in eqn 2.
We may find, for some ‘hidden states’, that A’ =1and B’ =1, that 4 =1
but that B=0 and (I — B) = 1, even though eqn 2b — P¥(B|4")=1—
holds. For eqn 2b is equivalent to P¥(4'B)=0= P¥[4'(I — B)]. The
right side of course requires that the product [4'(/ — B)] = 0 but this is
now compatible with 4" =1 and (I — B) = 1, since we no longer insist on
eqn 5a and hence on the product rule. I said it was not pretty. But it is
local, respects the probabilities of quantum mechanics and can accommo-
date all the measurement results. The ‘funny’ values — the ones that violate
the product rule, or the like — can be regarded as values assigned to
observables that do not commute with the ones being measured. From
the quantum mechanical point of view these values are truly hidden, but
they are locally assigned nevertheless.

The counterfactual reasoning that usually supports the interpretation of
the Hardy theorem as a nonlocality proof goes wrong at the very start. Even
before it gets entangled in nested counterfactuals it assumes that if a mea-
surement turns up 4’ = 1, then by virtue of P¥(B|4’) = 1 we must have that
B = 1. We see above, however, that locality alone does not make this neces-
sary; that is, not unless B is co-measured with A', in which case it will follow
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(just as it does in quantum mechanics). Reference to ‘elements of reality’
here — with its historically misleading echoes of EPR* — is equally off the
track. For the quantum probability assignment P¥(B|4’) = 1 does not say
that we can predict the value B = 1 from any measurement yielding 4" = 1
that does not disturb the B system. It says that if we measure 4’ and B
together, then where we find that 4" = 1 we also find that B = 1. So even if
we follow the prescription for elements of reality, all we can say is that where
we measure A’ and B together and find 4’ =1 we can assign a B =1
‘element of reality’. The Hardy argument, however, begins by supposing
we have measured 4’ with B’, not with B. In this situation there is no
B =1 ‘element of reality’ at all.

Beneath all these sophisticated arguments, I suggest, is a very simple con-
ception for how we ‘should’ assign values when we try to respect locality and
how we ‘should’ make that match up with the quantum probabilities. That
conception is the random variables framework with the assumption of eqn
Sa, or some equivalent. My point is that this conception goes well beyond the
commitments of locality, which can be salvaged by assigning values differ-
ently. That means that the Hardy theorem, like other variants on Bell, is not a
‘proof of nonlocality’. It is a proof that locality cannot be married to the
assignment of determinate values in the recommended way. That is interest-
ing and significant. It is not, however, a demonstration that quantum
mechanics is nonlocal, much less (as some proclaim) that nature is.
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