GEOMETRY OF SETS AND MEASURES IN
EUCLIDEAN SPACES

Fractals and rectifiability

Pertti Mattila

University of Jyväskylä, Finland
To Vappu
Contents

Acknowledgements .. xi
Basic notation .. xii
Introduction ... 1

1. General measure theory ... 7
 Some basic notation ... 7
 Measures ... 8
 Integrals ... 13
 Image measures ... 15
 Weak convergence ... 18
 Approximate identities 19
 Exercises ... 22

2. Covering and differentiation 23
 A 5r-covering theorem 23
 Vitali’s covering theorem for the Lebesgue measure 26
 Besicovitch’s covering theorem 28
 Vitali’s covering theorem for Radon measures 34
 Differentiation of measures 35
 Hardy–Littlewood maximal function 40
 Measures in infinite dimensional spaces 42
 Exercises ... 43

3. Invariant measures ... 44
 Haar measure .. 44
 Uniformly distributed measures 45
 The orthogonal group ... 46
 The Grassmannian of m-planes 48
 The isometry group .. 52
 The affine subspaces ... 53
 Exercises ... 53

4. Hausdorff measures and dimension 54
 Carathéodory’s construction 54
 Hausdorff measures .. 55
 Hausdorff dimension .. 58
 Generalized Hausdorff measures 59
 Cantor sets .. 60
 Self-similar and related sets 65
 Limit sets of Möbius groups 69
viii

Contents

Dynamical systems and Julia sets 71
Harmonic measure ... 72
Exercises ... 73

5. Other measures and dimensions 75
Spherical measures ... 75
Net measures .. 76
Minkowski dimensions ... 76
Packaging dimensions and measures 81
Integralgeometric measures 86
Exercises ... 88

6. Density theorems for Hausdorff and packing measures . 89
Density estimates for Hausdorff measures 89
A density theorem for spherical measures 92
Densities of Radon measures 94
Density theorems for packing measures 95
Remarks related to densities 98
Exercises ... 99

7. Lipschitz maps ... 100
Extension of Lipschitz maps 100
Differentiability of Lipschitz maps 100
A Sard-type theorem ... 103
Hausdorff measures of level sets 104
The lower density of Lipschitz images 105
Remarks on Lipschitz maps 106
Exercises ... 107

8. Energies, capacities and subsets of finite measure 109
Energies .. 109
Capacities and Hausdorff measures 110
Frostman’s lemma in \(\mathbb{R}^n \) 112
Dimensions of product sets 115
Weighted Hausdorff measures 117
Frostman’s lemma in compact metric spaces 120
Existence of subsets with finite Hausdorff measure 121
Exercises ... 124

9. Orthogonal projections 126
Lipschitz maps and capacities 126
Orthogonal projections, capacities and Hausdorff dimension . 127
Self-similar sets with overlap 134
Brownian motion ... 136
Exercises ... 138

10. Intersections with planes 139
Slicing measures with planes 139
Contents

11. **Local structure of s-dimensional sets and measures** 146
 - Distribution of measures with finite energy 146
 - Conical densities 152
 - Porosity and Hausdorff dimension 156
 - Exercises 158

12. **The Fourier transform and its applications** 159
 - Basic formulas 159
 - The Fourier transform and energies 162
 - Distance sets 165
 - Borel subrings of \mathbb{R} 166
 - Fourier dimension and Salem sets 168
 - Exercises 169

13. **Intersections of general sets** 171
 - Intersection measures and energies 171
 - Hausdorff dimension and capacities of intersections 177
 - Examples and remarks 180
 - Exercises 182

14. **Tangent measures and densities** 184
 - Definitions and examples 184
 - Preliminary results on tangent measures 186
 - Densities and tangent measures 189
 - s-uniform measures 191
 - Marstrand’s theorem 192
 - A metric on measures 194
 - Tangent measures to tangent measures are tangent measures 196
 - Proof of Theorem 11.11 198
 - Remarks 200
 - Exercises 200

15. **Rectifiable sets and approximate tangent planes** 202
 - Two examples 202
 - m-rectifiable sets 203
 - Linear approximation properties 205
 - Rectifiability and measures in cones 208
 - Approximate tangent planes 212
 - Remarks on rectifiability 214
 - Uniform rectifiability 215
 - Exercises 218

16. **Rectifiability, weak linear approximation and tangent measures** 220
 - A lemma on projections of purely unrectifiable sets 220
Contents

Weak linear approximation, densities and projections 222
Rectifiability and tangent measures 228
Exercises ... 230

17. Rectifiability and densities .. 231
 Structure of \(m \)-uniform measures 231
 Rectifiability and density one ... 240
 Preiss’s theorem .. 241
 Rectifiability and packing measures 247
 Remarks ... 247
 Exercises ... 249

18. Rectifiability and orthogonal projections 250
 Besicovitch–Federer projection theorem 250
 Remarks on projections .. 258
 Besicovitch sets ... 260
 Exercises ... 264

19. Rectifiability and analytic capacity in the complex plane 265
 Analytic capacity and removable sets 265
 Analytic capacity, Riesz capacity and Hausdorff measures 267
 Cauchy transforms of complex measures 269
 Cauchy transforms and tangent measures 273
 Analytic capacity and rectifiability 275
 Various remarks .. 276
 Exercises ... 279

20. Rectifiability and singular integrals 281
 Basic singular integrals ... 281
 Symmetric measures ... 283
 Existence of principal values and tangent measures 284
 Symmetric measures with density bounds 285
 Existence of principal values implies rectifiability 288
 \(L^p \)-boundedness and weak \((1,1)\) inequalities 289
 A duality method for weak \((1,1)\) 292
 A smoothing of singular integral operators 295
 Kolmogorov’s inequality .. 298
 Cotlar’s inequality ... 299
 A weak \((1,1)\) inequality for complex measures 301
 Rectifiability implies existence of principal values 301
 Exercises ... 304

References ... 305
List of notation .. 334
Index of terminology .. 337
Acknowledgements

This book grew out of the lecture notes Mattila [12] which were based on the lectures on geometric measure theory that I gave in Jarandilla de la Vera in 1984 at a summer school organized by Asociación Matemática Española and Universidad de Extremadura. I renew my thanks to Miguel de Guzmán and the other organizers of this meeting as well as to the inspiring audience. The preparation of this book was also greatly influenced by the course I gave as a visitor of Centre de Recerca Matemàtica at Universitat Autònoma de Barcelona in the spring of 1992. I want to thank the Centre for its hospitality and financial support; in particular my thanks are due to Joaquim Bruna, Manuel Castellet and Joan Verdera, and again to the active participants of the lectures. I am much obliged to Kenneth Falconer, Maarit Järvenpää and David Preiss, who corrected many mistakes and suggested numerous improvements in the first versions of the manuscript. Several other mathematicians have made useful comments that have been of great help to me. In particular I am grateful for this to Guy David, Tero Kilpeläinen, Peter Möllers, Joan Orobitg, Yuval Peres and Stephen Semmes. For skilful typing with \TeX I want to thank Eira Henriksson and Marja-Leena Rantalainen, and for other assistance Ari Lehtonen. Finally I would like to thank David Tranah and others from the Cambridge University Press for their help in the production of the book.

For financial support I am indebted to the Academy of Finland in different forms and during long periods. Parts of this book were written during the fall term 1991 at Stanford University and at the Institute for Advanced Study in Princeton, and during May–June 1992 at Institut des Hautes Études Scientifiques in Bures-sur-Yvette; I acknowledge with gratitude the financial support and the fruitful atmosphere of these institutes.
Basic notation

We introduce here the notation for some basic concepts which are not defined in the text. A more extensive glossary of notation is given at the end of the book.

\(\mathbb{Z} \), the set of integers.
\(\mathbb{R} \), the set of real numbers.
\(\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\} \).
\(\mathbb{C} \), the set of complex numbers.
\(\overline{z} \), Re \(z \) and Im \(z \) are the complex conjugate, real part and imaginary part of \(z \in \mathbb{C} \).
\(\mathbb{R}^n \), the \(n \)-dimensional euclidean space equipped with the inner product \(x \cdot y \) and norm \(|x| \).
\(S^{n-1} = \{ x \in \mathbb{R}^n : |x| = 1 \} \), the unit sphere.
\([a,b] \), \((a,b) \), \([a,b) \) and \((a,b] \) are the closed, open and half-open intervals in \(\overline{\mathbb{R}} \) with end-points \(a,b \in \overline{\mathbb{R}} \).
\(\mathcal{L}^n \), the Lebesgue measure on \(\mathbb{R}^n \).
\(\alpha(n) = \mathcal{L}^n\{ x \in \mathbb{R}^n : |x| \leq 1 \} \), the volume of the unit ball.
\(\overline{A} = \text{Cl} \, A \), the closure of the set \(A \).
\(\partial A \), the boundary of \(A \).
\(\chi_A \), the characteristic function of \(A \).
\(A + B = \{ x + y : x \in A, \ y \in B \} \).
\(A + a = \{ x + a : x \in A \} \).
\(\text{card} \, A \), the number points in the set \(A \); possibly 0 or \(\infty \).
\(\bigcup \mathcal{A} = \bigcup_{A \in \mathcal{A}} A \), the union of the set family \(\mathcal{A} \).
\(\bigcap \mathcal{A} \), the intersection of \(\mathcal{A} \).

We often use notation like \(\{ x : f'(x) > 0 \} \) to mean the set of those points \(x \) where the derivative \(f'(x) \) exists and is positive.

The symbol \(\Box \) denotes the end of the proof.