INDEX

Abbott, Leonard, 41
Abelson, Philip, 89, 136
abrasives, 142–3, 163–4
African diamond production, 170
alcohol phase transition, 229
Alundum (Norton Company), 81–3
American Chemical Society, 138
American Mineralogist, 149
Angus, John C., 203–5
Anthony, Thomas R., 205
Appleton, Victor, 30–1
ASEA, 61–77, 148, 183
atmosphere (pressure unit), 47
Australian diamond production, 170
beryllium, 216
Birch, Francis
 high-pressure experiments, 89–90
 visit to Norton, 86–7
Birdsboro Company, 103
bismuth, 223
Blainy, Alan, 171
boron nitride, 148–9
Bovenkerk, Harold
 attempts to duplicate Strong’s synthesis, 125–6
 Bridgman visit to GE, 139
 education, 104
 GE work, 104, 113, 125–6, 132, 134–5, 141–2, 152
 on Chen-Min Sung, 185
 on De Beers, 171, 179–80
 photographs, 135, 140, 168
 transfer to Detroit, 134–5, 141–2
Boyd, Francis R. (Joe)
 boydite, 91
 diamond synthesis, 154–7
 on George Kennedy, 173–6
 photographs, 87, 92, 156
 visit to Norton, 86–9
Bragg, Lawrence, 33
Bragg, William, 33
Braman, Dennis R., 192
Brazilian diamond production, 8
Bridgman, Percy W., 39–60
 advice to A. W. Lawson, 215
 childhood, 39–41

237
Bridgman, Percy W. (cont.)
collected papers, 58
diamond synthesis, 56–8, 78, 80, 96,
138–40
Nobel Prize, 58
on the diamond-anvil cell, 229
opposed-anvil device, 222
personality, 43
photograph, 42, 139, 140
The Physics of High Pressure, 52
pressure calibration, 47–9
pressure records, 49, 55
pressure research, 39–40, 43, 49–58, 78,
101–2
pressure seal, 43–7
suicide, 58–9
Brigham Young University, 136
Bundy, Francis
De Beers trial, 179
delta carbon, 192–3
education, 99–100
flying saucer design, 109–10
General Electric work, 98–105, 107,
109–10, 112–17, 119–20, 132, 133, 139,
152
photographs, 106, 119
superbelt, 145–6
Bunting, Elmer, 221
Canyon Diablo Meteor Crater, 21, 91, 192,
195
Carboloy, see tungsten carbide
Carboloy Division (General Electric), 57,
96, 114–5, 140–2
carbon, 1, 10, 146–7, 161–2
Carborundum Company, 149
Carlisle, David B., 192
Carnegie Institution of Washington, 85–6,
116, 154–6
Case Western Reserve, 202–4
ceramics, 8–3
Chambers, Dudley, 101
Chao, Edward, 90–1
Charles VII, King of France, 7
Chase, Charles, 55
Chemical News, 25
Chinese diamond synthesis, 184
close packing, 193–5
Coes, Loring, Jr., 78–94
coeite, 84–5, 90–1, 192
Comstock, George, 86
cone apparatus, 116–17, 119–21, 123–5
Connell, William, 52
Cordiner, Ralph, 126
corundum, 81–2, 120
Cosmos Club (Washington, DC), 175–6
Crookes, William, 25–8
crystal energy, 32–3
crystal structure
diamond, 33–4
graphite, 33–4
crystallography, 213–15
Crystallume, 205
cubic-anvil press, 185–8
Cullinan diamond, 2–3
Cullinan, Thomas, 3
Custers, J. F. H., 170–1
cvd, see chemical vapor deposition
Davy, Humphry, 20
De Beers
Adamant Research Laboratory, 170–2
belt apparatus, 171
control of diamond market, 132–3, 144
diamond production, 170–2, 183
diamond synthesis, 75–7
legal battles, 172, 176–81
patents, 151–2
piston-cylinder device, 171
response to GE diamonds, 143
De Carli, Paul S., 195
Index

239

Derjaguin, Boris V., 202–5, 229–30
Despretz, Charles, 16
De Vries, Robert, 205
diamond abrasives, 162–8
blue, 160
composition, 9–10, 19
conditions for synthesis, 145
confirmation of synthesis, 131–2
crystal forms, 141–2
crystal structure, 33–4
dispersion, 6
facets, 6–8
famous stones, 2–3
fine-grained, 162–3
formed by meteor impact, 192, 195
isotopically pure, 161–2
jewelry, 7–8
large synthetic crystals, 159–61, 184
lonsdaleite, 193, 196
nitrogen impurities, 220
origins, 1, 9, 11–14
phase diagram, 35–6
prices, 133, 144
production, 7–8, 11, 13
properties, 2–3, 5–6, 9–10
semiconductor, 206–8
smugglers, 219
stability, 54–6
synthesis patents, 172, 177–9
talismans, 2
tests of quantum theory, 32–3
transparency, 215–14
type I and II, 220
uses, 2, 163, 205–10, 213–14
diamond-anvil cell, 222–33
gasket, 226–7
invention, 222–5
lever arm, 224–9
patent, 232
dispersion, 6
Donahoe, Frank, 231
drilled-diamond cell, 216–21
Du Pont Mypolex, 195–7
Dunbar Laboratory, Harvard University, 51–2, 57
Dunbar, Atherton K., 51–2
Dyer, Henry B., 170–2, 189
eclogite, 83–4
Edison, Thomas, 96–7, 105
Einstein, Albert, 32–3
electric arc furnace, 21–3, 25
electromagnetic radiation, 213–14
England, Joe, 155–7
Eureka diamond, 11
Eversole, W. G., 200–2
explosions
belt apparatus, 158–9
Crookes experiments, 28
Hannay experiments, 17–19
high-pressure, 51–2, 157–9, 181
used to make diamond, 190–7
facets, 6–8
Fedoseev, Dimitri V., 202–3
Fedyakin, N. N., 229–30
fluorine, 19–21
flying saucer device, 109–10
Ford, Henry, 105
Fuller, R. Buckminster, 163
Gannal, J. N., 16
Garis, Howard, 31
garnet, 83, 86
gasket
design for belt, 118
diamond-anvil cell, 226–8
pyrophyllite, 103, 117–18
wonderstone, 103, 187
Gay-Lussac, Louis, 20
Index

General Electric
Carboloy Division, 54–7, 96, 114–5
cvd diamond, 200–2
Detroit plant, 114–5, 140–2, 163
diamond synthesis, 76–7, 93, 95–169
drilled-diamond cell, 221
Knolls research lab, 100–1
legal battles, 172, 176–9
new press, 103
research laboratory, 97–8
Worthington plant, 164–8, 184–5
Geophysical Laboratory, xi, 85–6, 89–90, 116
Getting, Ivan, 181–2
Giardini, Armando, 149–51, 154, 179–80
Gillespie, J. Stokes, 140–1
gliding, 100, 104, 114
Gore, George, 20
gravel, 190
Griggs, David T., 56
half-belt apparatus, 118–19
Hall, H. Tracy
belt apparatus, 118–19, 151–2
Bridgman visit, 150
Brigham Young University, 136
childhood, 104–5
Chinese diamond synthesis, 184
cubic-anvil press design, 185–8
De Beers trial, 179–80
diamond purchases, 109
diamond synthesis, 152, 185–6
first diamond, 112–14, 125–9
General Electric work, 105–6, 110–26, 128–31, 133–4
half-belt apparatus, 118–19
Hannay, James Ballantine, 16–19
Harvard University
accident, 51
Dunbar Laboratory, 31–2, 56–7
high-pressure research, 89–90
Percy Bridgman, 40–1, 44–5
Hesshey, J. Willard, 25–6
hexagonal diamond, see lonsdaleite
Heygarth, John, 181
High Pressure Diamond Optics, 232–3
Hirose, Y., 205
Hope diamond, 2, 220
Hughes Corporation, 181
Hurlbut, Cornelius, 86–9
hydrogen, 158–9
ice, high-pressure forms, 50
Indian diamond production, 7–8
Irish diamond synthesis plants, 183
iron, use in diamond synthesis
ASAE, 65, 67
General Electric, 125, 128, 131–2, 145
isotopes, carbon, 161–2
Jagersfontein, 3
Jamieson, John C., 195, 217–18, 222–4
Japanese diamond synthesis, 183–4, 205
Jensen, Peter, 80
Jessup, Ralph S., 36
Journal of Applied Physics, 99
Keat, Paul, 93
Kennametal, 164
Kennedy, George
advice on diamond making, 158
at Harvard, 155
Index

character, 172–6
diamond synthesis, 157, 181–3
on pressure calibration, 178
photograph, 173
Kennedy, Jack, 164
Kimberley Mine, South Africa, 11–12, 26
kimberlite, 11–14, 21
King, Alan G., 91
Kistler, Samuel, 79–81, 92, 122
Knox, George, 20
Knox, Thomas, 20
La Mori, Phillip N., 178
Lake George high-pressure conference, 178
Langmuir, Irving, 139, 158
large-volume apparatus, 45
Lavoisier, Antoine-Laurent, 9–10
Lawson, Andrew W., 215–17, 223–4
Lemoine, Monsieur, 25
Levin, Samuel B., 149, 151
Linder, Halvard, 71
Liebhafsky, Herman, 119
light, speed of, 4–6
Liljeblad, Ragnar, 65
limestone quarries, 190–1
Lippincott, Ellis, 223–6, 229, 231–2
lithium carbide, 120
Lonsdale, Kathleen, 193
lonsdaleite, 193
Los Alamos National Laboratory, 90
Louyet, Paulin, 20
Lundblad, Erik, 62, 71–7, 148
MacDonald, Gordon, 86–7
Manhattan Project, 90, 215
Marshall, A. L., 164
Mather, Kirtley, 155
Matsumoto, S., 204–5
Maxwell, James Clerk, 213
McHardy, William, 3
McKelvey, Vincent, 155
McPike, E. F., 50
Meggadiamond, 185–6
meteorite diamond formation, 191
Mitchell, Richard S., 149
Mooissan, Frederick-Henri, 19–25
moissanite (silicon carbide), 24
Moy, Wing, 80
Myporex (Du Pont), 196–7
National Bureau of Standards, 38, 218–21,
224–33
National Enquirer, 231
National Institutes of Standards and
Technology, see National Bureau of
Standards
National Science Foundation, 136, 176
Nature (periodical), 128, 133, 152
Navias, Louis, 103
Nerad, Anthony J., 97–8, 100, 104–6, 123,
125, 131, 140, 164
Newton, Isaac, 9
Nickles, Jerome, 21
nitrogen
effect on diamond, 210
impurity in diamond, 19
Nobel Prize, 19, 39, 58, 114, 129
Nobel, Andrew, 28
Norton Company, 57, 78–94, 184
Office of Naval Research, 215
Oppenheimer, J. Robert, 41
opposed-anvil device, 58–9, 101–2,
222–3
Ortiani, Richard, 132, 200–1
Orloff diamond, 2
Osborn, E. F., 86–7
Parsons, Charles Algernon, 28–31
pascal (pressure unit), 48
patents
belt apparatus, 135–6, 177–8
cvd diamond, 201–2
De Beers, 151–2
Index

patents (cont.)
declassification, 151–2
diamond anvil cell, 232
diamond synthesis, 135–6, 145–8, 172, 176–9
tetrahedral-anvil device, 138
peanut butter to diamond, 146–7
Pennsylvania State University, 90
Phaal, C., 171
phase diagram of carbon, 35–6, 147
phase transitions
alcohol, 228–9
bismuth, 223
potassium chloride, 226
quartz, 84–5
research, 214–15
water, 50–1, 227–8
pipestone, 46, 102
piston-cylinder device, 45, 53, 81, 115, 149–51, 171, 181–2, 222
Pliny the Elder, 1
polyethylene, 158
polywater, 204, 229, 231–2
potassium chloride, 226
Premier Mine, 3–4
pressure
allure of research, 40
apparatus, 45
calibration, 47–9, 145, 176–8
definition, xiii
laboratory range, xiv
records, 46, 49
role in diamond stability, 35–6
units, xiii–xiv, 47–8
use of explosives, 28, 190–7
Project Superpressure, 97
pyrophyllite, 97, 103, 117, 128, 187
quantum theory, 32–3
quartz, 84
QUINTUS Project, 71–5

Reagan, Ronald, 163
Regent diamond, 3
Research and Design Associates, 182–3
Review of Scientific Instruments, 152, 223
Rhodes, Cecil, 11–12
Robertson, Eugene, 86–7, 89–90
Rocco, William A., 163
Rossini, Frederick D., 36
Rousseau, Dennis L., 231–2
Roy, Rustom, 86–8, 90, 205–6
Royal Society of Edinburgh, 17, 19
Russian diamond production, 170, 183
Scandiamant, 75
Schmidt, Harrison (Jack), 163
Science (periodical), 85, 90, 231–2
Scientific American, 56, 119
secrecy order, 14, 136, 138, 151–2
Sekata, S., 204–5
semiconductors, 206–8
Senior, D. B., 171
shock wave research, 195–6
silicon carbide, 24, 28
simple squeezer, 54–5
Singer, Chuck, 133
Slater, John C., 41
Slawson, Chester B., 149
Smith, Bob, 144
Smithsonian Institution, 2, 126, 220
smuggled diamonds, 219
Sorel, Agnes, 7
Sosman, Robert, 90
South African diamonds, 11–13
South Korean diamond synthesis, 184–5
Soviet Union diamond synthesis, 183
spectroscopy, 225–6, 231–2
Spitzy, Boris V., 202–3
split-diamond bomb, 65–70
Stanko, Wayne S., 203
Star of South Africa diamond, 11
Stromberg, Robert R., 231
Index

Strong, Herbert
 cone apparatus, 116–17, 119–22
 diamond crystals, 158–61
 diamond synthesis, 102–4, 152
 education, 98–9
 first diamond, 112–15, 122–9
 photograph, 106, 121, 139, 140, 160
 Suits, C. Guy, 95, 103, 112–13, 123, 131
 Sung, Chen-Min, 184–5
 superbelt apparatus, 145–6
 Switzer, George, 220
 synthesis
 boron nitride (cubic), 148
 coesite, 84–5
 diamond, 159, 16–174, 181–212
 diamond by cvd, 199–212
 diamond single crystals, 158–61
 garnet, 83, 86
 minerals, 83–4
 Van Valkenburg, Alvin
 diamond-anvil cell, 222–30, 232–3
 gasket design, 226–8
 high-pressure research, 218–30, 232–3
 on George Kennedy, 175
 on secrecy order, 151
 photograph, 87, 92, 221, 230
 visit to Army lab, 151
 visit to Norton, 86–9
 Van Valkenburg, Eric
 Vargas diamond, 3
 volcanoes, 13–14
 water, phase transitions, 50–1
 Thompson, James, 86–8
 Tom Swift Among the Diamond Makers, 30–1
 Tour, C. Cagniard de la, 16
 Tufts, Roy E., 159
 Tungsten carbide, 54, 57, 82–3, 88–9, 101–2, 116, 119
 Turnbull, David, 200–1
 Tuttle, O. F., 90
 Tydings, John E., 149–51, 154
 U.S. Synthetic Corporation, 185–8
 Transistors, 207
 Union Carbide, 200–2
 United States Army Electronics Laboratory
 (Fort Monmouth, NJ), 149–51
 United States Geological Survey, 90
 United States Patent Office, 134, 136
 University of Chicago, 215–18, 222–4
 unsupported-area packing, 45–7
 Van Valkenburg, Alvin
 diamond-anvil cell, 222–30, 232–3
 gasket design, 226–8
 high-pressure research, 218–30, 232–3
 on George Kennedy, 175
 on secrecy order, 151
 photograph, 87, 92, 221, 230
 visit to Army lab, 151
 visit to Norton, 86–9
 Van Valkenburg, Eric, 233
 Vargas diamond, 3
 volcanoes, 13–14
 Von Platen, Baltzar, 61–77
 diamond synthesis, 64–77
 idiosyncracies, 61–3
 inventions, 63
 photograph, 61
 split-sphere device, 66–9
 Weir, Charles
 diamond-anvil cell, 224–6
Weir, Charles (cont.)
 high-pressure research, 218–21, 224–6
 photograph, 221
 racial prejudice against, 218
 retirement, 232
 visit to Percy Bridgman, 229
Wells, Fred, 3–4
Wells, Herbert G., 16
Wentorf, Robert
 Compax synthesis, 162–4
 diamond crystal growth, 159–61
 diamond synthesis publication, 152
 education, 107
 General Electric work, 106–10, 112–16, 120, 122, 125, 132–3, 139, 144–9
 peanut butter experiments, vii, 146–8
 photographs, 106, 108, 139, 160
 Weldon, Max, 80–1
 Will, Herbert A., 203
 Winston, Harry, 2
 Wonderstone, see pyrophyllite
 Woodbury, Hugh, 126, 132
Wieldon, Max, 80–1
Will, Herbert A., 203
Winston, Harry, 2
Wonderstone, see pyrophyllite
Woodbury, Hugh, 126, 132
x-ray Diffraction, 32–4, 128, 131, 193, 213–18, 222–4
Yoder, Hatten S., Jr.
 high-pressure experiments, 89
 meeting with Bridgman, 41, 43
 photographs, 87, 92
 visit to Norton, 85–9