Cellular Neural Networks and Visual Computing

Cellular Nonlinear/neural Network (CNN) technology is both a revolutionary concept and an experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are set to change the way analog signals are processed and are paving the way to an entire new analog computing industry.

This unique undergraduate-level textbook includes many examples and exercises, including CNN simulator and development software accessible via the Internet. It is an ideal introduction to CNNs and analogic cellular computing for students, researchers, and engineers from a wide range of disciplines. Although its prime focus is on visual computing, the concepts and techniques described in the book will be of great interest to those working in other areas of research, including modeling of biological, chemical, and physical processes.

Leon Chua is a Professor of Electrical Engineering and Computer Science at the University of California, Berkeley where he co-invented the CNN in 1988 and holds several patents related to CNN Technology. He received the Neural Network Pioneer Award, 2000.

Tamás Roska is a Professor of Information Technology at the Pázmány P. Catholic University of Budapest and head of the Analogical and Neural Computing Laboratory of the Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest and was an early pioneer of CNN technology and a coinventor of the CNN Universal Machine as an analogic supercomputer. He has also spent 12 years as a part-time visiting scholar at the University of California at Berkeley.
Cellular neural networks and visual computing
Foundation and applications

Leon O. Chua

and

Tamás Roska
To our wives, Diana and Zsuzsa
Contents

Acknowledgements

<table>
<thead>
<tr>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xi</td>
</tr>
</tbody>
</table>

1 Introduction

<table>
<thead>
<tr>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
</tbody>
</table>

2 Notation, definitions, and mathematical foundation

<table>
<thead>
<tr>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Notation, definitions, and mathematical foundation</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Basic notation and definitions</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Mathematical foundations</td>
<td>14</td>
</tr>
</tbody>
</table>

3 Characteristics and analysis of simple CNN templates

<table>
<thead>
<tr>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Characteristics and analysis of simple CNN templates</td>
<td>35</td>
</tr>
<tr>
<td>3.1 Two case studies: the EDGE and EDGEGRAY templates</td>
<td>35</td>
</tr>
<tr>
<td>3.2 Three quick steps for sketching the shifted DP plot</td>
<td>49</td>
</tr>
<tr>
<td>3.3 Some other useful templates</td>
<td>50</td>
</tr>
</tbody>
</table>

4 Simulation of the CNN dynamics

<table>
<thead>
<tr>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Simulation of the CNN dynamics</td>
<td>100</td>
</tr>
<tr>
<td>4.1 Integration of the standard CNN differential equation</td>
<td>100</td>
</tr>
<tr>
<td>4.2 Image input</td>
<td>101</td>
</tr>
<tr>
<td>4.3 Software simulation</td>
<td>102</td>
</tr>
<tr>
<td>4.4 Digital hardware accelerators</td>
<td>110</td>
</tr>
<tr>
<td>4.5 Analog CNN implementations</td>
<td>111</td>
</tr>
<tr>
<td>4.6 Scaling the signals</td>
<td>113</td>
</tr>
<tr>
<td>4.7 Discrete-time CNN (DTCNN)</td>
<td>114</td>
</tr>
</tbody>
</table>
5 Binary CNN characterization via Boolean functions

5.1 Binary and universal CNN truth table 115
5.2 Boolean and compressed local rules 122
5.3 Optimizing the truth table 124

6 Uncoupled CNNs: unified theory and applications

6.1 The complete stability phenomenon 139
6.2 Explicit CNN output formula 140
6.3 Proof of completely stable CNN theorem 142
6.4 The primary CNN mosaic 155
6.5 Explicit formula for transient waveform and settling time 156
6.6 Which local Boolean functions are realizable by uncoupled CNNs? 161
6.7 Geometrical interpretations 162
6.8 How to design uncoupled CNNs with prescribed Boolean functions 166
6.9 How to realize non-separable local Boolean functions? 173

7 Introduction to the CNN Universal Machine

7.1 Global clock and global wire 184
7.2 Set inclusion 184
7.3 Translation of sets and binary images 188
7.4 Opening and closing and implementing any morphological operator 190
7.5 Implementing any prescribed Boolean transition function by not more than 256 templates 195
7.6 Minimizing the number of templates when implementing any possible Boolean transition function 198
7.7 Analog-to-digital array converter 201

8 Back to basics: Nonlinear dynamics and complete stability

8.1 A glimpse of things to come 205
8.2 An oscillatory CNN with only two cells 205
8.3 A chaotic CNN with only two cells and one sinusoidal input 210
8.4 Symmetric A template implies complete stability 214
8.5 Positive and sign-symmetric A template implies complete stability 219
Contents

8.6 Positive and cell-linking A template implies complete stability 224
8.7 Stability of some sign-antisymmetric CNNs 231
A Appendix to Chapter 8 236

9 The CNN Universal Machine (CNN-UM) 239
9.1 The architecture 240
9.2 A simple example in more detail 244
9.3 A very simple example on the circuit level 246
9.4 Language, compiler, operating system 254

10 Template design tools 258
10.1 Various design techniques 258
10.2 Binary representation, linear separability, and simple decomposition 260
10.3 Template optimization 264
10.4 Template decomposition techniques 265

11 CNNs for linear image processing 267
11.1 Linear image processing with B templates is equivalent to spatial convolution with FIR kernels 267
11.2 Spatial frequency characterization 269
11.3 A primer on properties and applications of discrete-space Fourier transform (DSFT) 272
11.4 Linear image processing with A and B templates is equivalent to spatial convolution with IIR kernels 272

12 Coupled CNN with linear synaptic weights 276
12.1 Active and inactive cells, dynamic local rules 278
12.2 Binary activation pattern and template format 283
12.3 A simple propagating type example with B/W symmetrical rule 284
12.4 The connectivity problem 286

13 Uncoupled standard CNNs with nonlinear synaptic weights 290
13.1 Dynamic equations and DP plot 291
Contents

14 Standard CNNs with delayed synaptic weights and motion analysis
- 14.1 Dynamic equations 296
- 14.2 Motion analysis – discrete time and continuous time image acquisition 297

15 Visual microprocessors – analog and digital VLSI implementation of the CNN Universal Machine
- 15.1 The analog CNN core 304
- 15.2 Analogic CNN-UM cell 310
- 15.3 Emulated digital implementation 312
- 15.4 The visual microprocessor and its computational infrastructure 313
- 15.5 Computing power comparison 318

16 CNN models in the visual pathway and the “Bionic Eye”
- 16.1 Receptive field organization, synaptic weights, and cloning template 321
- 16.2 Some prototype elementary functions and CNN models of the visual pathway 322
- 16.3 A simple qualitative “engineering” model of a vertebrate retina 329
- 16.4 The “Bionic Eye” implemented on a CNN Universal Machine 338

Notes 339

Bibliography 348

Exercises 361

Appendices 389

Index 390
Acknowledgements

We started to teach a formal course devoted entirely to CNN only in 1996, in the Spring Semester, at Berkeley and in the Autumn Semester in Budapest. Since then, several versions of Lecture Notes have been iterated. We are indebted to many of our former students – some of whom have become our coworkers – who have helped us in various forms we are thankful to all of them. Dr. Ákos Zarándy, Dr. Ken Crounse, Dr. Csaba Rekecky, Dr. Chai-Wah Wu, Dr. László Kék, Dr. László Nemes, Dr. András Radványi, and Dr. Péter Szolgay, as well as Tao Yang, An-Shan Huang, Dávid Bálya, Katalin Keserű, István Petrás and István Szatmári made special efforts to help us during the many years of forming the text to this present version. We are also grateful to Phil Meyler for his kind initiative to publish this textbook.

Leon O. Chua and Tamás Roska
Berkeley–Budapest, May 2000