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Brittle fracture of rock

Under the low temperature and pressure conditions of Earth’s upper litho-
sphere, silicate rock responds to large strains by brittle fracture. The mecha-
nism of brittle behavior is by the propagation of cracks, which may occur on
all scales. We begin by studying this form of deformation, which is funda-
mental to the topics that follow.

1.1 Theoretical concepts
1.1.1 Historical
Understanding the basic strength properties of rock has been a practical
pursuit since ancient times, both because of the importance of mining and
because rock was the principal building material. The crafting of stone
tools required an intuitive grasp of crack propagation, and mining, quarry-
ing, and sculpture are trades that require an intimate knowledge of the
mechanical properties of rock. The layout and excavation of quarries, for
example, is a centuries-old art that relies on the recognition and exploita-
tion of preferred splitting directions in order to maximize efficiency and
yield. One of the principal properties of brittle solids is that their strength
in tension is much less than their strength in compression. This led, in
architecture, to the development of fully compressional structures through
the use of arches, domes, and flying buttresses.

Rock was one of the first materials for which strength was studied with
scientific scrutiny because of its early importance as an engineering
material. By the end of the nineteenth century the macroscopic phenome-
nology of rock fracture had been put on a scientific basis. Experimentation
had been conducted over a variety of conditions up to moderate confining
pressures. The Coulomb criterion and the Mohr circle analysis had been
developed and applied to rock fracture with sufficient success that they
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remain the principal tools used to describe this process for many engineer-
ing and geological applications.

The modern theory of brittle fracture arose as a solution to a crisis in
understanding the strength of materials, brought about by the atomic
theory of matter. In simplest terms, strength can be viewed as the
maximum stress that a material can support under given conditions.
Fracture (or flow) must involve the breaking of atomic bonds. An estimate of
the theoretical strength of a solid is therefore the stress required to break the
bonds across a lattice plane.

Consider a simple anharmonic model for the forces between atoms in a
solid, as in Figure 1.1, in which an applied tension � produces an increase in
atomic separation r from an equilibrium spacing a (Orowan, 1949). Because
we need only consider the prepeak region, we can approximate the
stress–displacement relationship with a sinusoid,

���tsin (1.1)

For small displacements, when r�a, then

(1.2)
d�

d(r � a)
�

E
a

�
2�

�
�tcos�2�(r � a)

� �

�2�(r � a)
� �
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Fig. 1.1. Sketch of an

anharmonic model of

interatomic forces,

showing the

relationship between

stress and atomic

separation (solid curve)

and a sinusoidal

approximation (dashed

curve).



but because (r�a)/��1, the cosine is equal to 1, and

�t� (1.3)

where E is Young’s modulus. When r�3a/2, the atoms are midway between
two equilibrium positions, so by symmetry, ��0 there and a��. The theo-
retical strength is thus about E/2�. The work done in separating the planes
by �/2 is the specific surface energy �, the energy per unit area required to
break the bonds, so

2�� �tsin d(r�a)� (1.4)

which, with �t�E/2�, yields the estimate ��Ea/4�2.
The value of the theoretical strength from this estimate is 5–10 GPa,

several orders of magnitude greater than the strength of real materials.
This discrepancy was explained by the postulation and later recognition
that all real materials contain defects. Two types of defects are important:
cracks, which are surface defects; and dislocations, which are line defects.
Both types of defects may propagate in response to an applied stress and
produce yielding in the material. This will occur at applied stresses much
lower than the theoretical strength, because both mechanisms require that
the theoretical strength be achieved only locally within a stress concentration
deriving from the defect. The two mechanisms result in grossly different
macroscopic behavior. When cracks are the active defect, material failure
occurs by its separation into parts, often catastrophically: this is brittle
behavior. Plastic flow results from dislocation propagation, which produces
permanent deformation without destruction of the lattice integrity.

These two processes tend to be mutually inhibiting, but not exclusive, so
that the behavior of crystalline solids usually can be classed as brittle or
ductile, although mixed behavior, known as semibrittle, may be more preva-
lent than commonly supposed. Because the lithosphere consists of two parts
with markedly different rheological properties, one brittle and the other
ductile, it is convenient to introduce two new terms to describe them. These
are schizosphere (literally, the broken part) for the brittle region, and plasto-
sphere (literally, the moldable part) for the ductile region. In this book we will
assume, for the most part, that we are dealing with purely brittle processes, so
that we will be concerned principally with the behavior of the schizosphere.

��t

��2�(r � a)
� ��

�/2

0

E�

2�a
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1.1.2 Griffith theory
All modern theories of strength recognize, either implicitly or explicitly,
that real materials contain imperfections that, because of the stress con-
centrations they produce within the body, result in failure at much lower
stresses than the theoretical strength. A simple example, Figure 1.2(a), is a
hole within a plate loaded with a uniform tensile stress �

�
. It can be shown

from elasticity theory that at the top and bottom of the hole a compressive
stress of magnitude ��

�
exists and that at its left and right edges there will

be tensile stresses of magnitude 3�
�
. These stress concentrations arise from

the lack of load-bearing capacity of the hole and their magnitudes are
determined solely by the geometry of the hole and not by its size. If the hole
is elliptical, as in Figure 1.2(b), with semiaxes b and c, with c	b, the stress
concentration at the ends of the ellipse increases proportionally to c/b,
according to the approximate formula

���
�

(1
2c/b)

or

���
�

[1
2(c/�)1/2]��
�

(c/�)1/2 (1.5)
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Fig. 1.2. Stress concentration around (a) a circular hole, and (b) an elliptical hole in a

plate subjected to a uniform tension �
�
.
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for c�b, where � is the radius of curvature at that point. It is clear that for a
long narrow crack the theoretical strength can be attained at the crack tip
when �

�
��t. Because Equation (1.5) indicates that the stress concentration

will increase as the crack lengthens, crack growth can lead to a dynamic
instability.

Griffith (1920, 1924) posed this problem at a more fundamental level, in
the form of an energy balance for crack propagation. The system he consid-
ered is shown in Figure 1.3(a) and consists of an elastic body that contains a
crack of length 2c, which is loaded by forces on its external boundary. If the
crack extends an increment 
c, work W will be done by the external forces
and there will be a change in the internal strain energy Ue. There will also
be an expenditure of energy in creating the new surfaces Us. Thus the total
energy of the system, U, for a static crack, will be

U�(�W
Ue)
Us (1.6)

The combined term in parentheses is referred to as the mechanical energy.
It is clear that, if the cohesion between the incremental extension surfaces
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c were removed, the crack would accelerate outward to a new lower energy
configuration: Thus, mechanical energy must decrease with crack exten-
sion. The surface energy, however, will increase with crack extension,
because work must be done against the cohesion forces in creating the new
surface area. There are two competing influences; for the crack to extend
there must be reduction of the total energy of the system, and hence at
equilibrium there is a balance between them. The condition for equilib-
rium is

dU/dc�0 (1.7)

Griffith analyzed the case of a rod under uniform tension. A rod of length y,
modulus E, and unit cross section loaded under a uniform tension will have
strain energy Ue�y�2/2E. If a crack of length 2c is introduced into the rod, it
can be shown that the strain energy will increase an amount �c2�2/E, so
that Ue becomes

Ue��2 (y
2�c2)/2E (1.8)

The rod becomes more compliant with the crack, with an effective modulus
E�yE/(y
2�c2). The work done in introducing the crack is

W��y(�/E��/E)�2��2c2/E (1.9)

and the surface energy change is

Us�4c� (1.10)

Substituting Equations (1.8)–(1.10) into Equation (1.6) gives

U���c2�2/E
4c� (1.11)

and applying the condition for equilibrium (Equation (1.7)), we obtain an
expression for the critical stress at which a suitably oriented crack will be at
equilibrium,

�f�(2E�/�c)1/2 (1.12)

The energies of the system are shown in Figure 1.3(b), from which it can be
seen that Equation (1.12) defines a position of unstable equilibrium: when
this condition is met the crack will propagate without limit, causing
macroscopic failure of the body.

Griffith experimentally tested his theory by measuring the breaking
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strength of glass rods that had been notched to various depths. He obtained
an experimental result with the form of Equation (1.12) from which he was
able to extract an estimate of �. He obtained an independent estimate of �
by measuring the work necessary to pull the rods apart by necking at ele-
vated temperatures. By extrapolating this result to room temperature, he
obtained a value that was within reasonable agreement with that derived
from the strength tests.

Griffith’s result stems strictly from a consideration of thermodynamic
equilibrium. Returning to our original argument, we may ask if the theoret-
ical strength is reached at the crack tip when the Griffith condition is met:
that is, is the stress actually high enough to break the bonds? This question
was posed by Orowan (1949), who considered the stress at the tip of an atom-
ically narrow crack, as described before. Combining Equations (1.3) and
(1.4), we obtain

�t�(E�/a)1/2 (1.13)

This stress will exist at the ends of a crack of length 2c when the macro-
scopic applied stress �f is (Equation (1.5))

�t�2�f(c/a)1/2 (1.14)

so that

�f�(E�/4c)1/2 (1.15)

which is very close to Equation (1.12). The close correspondence of these two
results demonstrates both necessary and sufficient conditions for crack
propagation. Griffith’s thermodynamic treatment shows the condition for
which the crack is energetically favored to propagate, while Orowan’s calcu-
lation shows the condition in which the crack-tip stresses are sufficient to
break atomic bonds. For a typical value of ��Ea/30 (Equation (1.4)), com-
monly observed values of strength of E/500 can be explained by the pres-
ence of cracks of length c�1 �m. Prior to the advent of the electron
microscope, the ubiquitous presence of such microscopic cracks was hypo-
thetical, and this status was conferred upon them with the use of the term
Griffith crack.

Griffith’s formulation has an implicit instability as a consequence of the
constant stress boundary condition. In contrast, the experiment of
Obriemoff (1930) leads to a stable crack configuration. Obriemoff measured

1.1 Theoretical concepts 7



the cleavage strength of mica by driving a wedge into a mica book using the
configuration shown in Figure 1.4(a). In this experiment the boundary con-
dition is one of constant displacement. Because the wedge can be consid-
ered to be rigid, the bending force F undergoes no displacement and the
external work done on the system is simply

W�0 (1.16)

From elementary beam theory, the strain energy in the bent flake is

Ue�Ed3h2/8c3 (1.17)

and, using Us�2c� and the condition dU/dc�0, we obtain the equilibrium
crack length

c�(3Ed3h2/16�)1/4 (1.18)

The energies involved in this system are shown in Figure 1.4(b). It is clear
that in this case the crack is in a state of stable equilibrium; it advances the
same distance that the wedge is advanced. This example shows that the
stability is controlled by the system response, rather than being a material
property, a point that will be taken up in greater detail in the discussion of
frictional instabilities in Section 2.3. In this case the loading system may be
said to be infinitely stiff, and crack growth is controlled and stable.
Griffith’s experiment, on the other hand, had a system of zero stiffness and
the crack was unstable. Most real systems, however, involve loading systems

8 1 Brittle fracture of rock
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with finite stiffness so that the stability has to be evaluated by balancing the
rate at which work is done by the loading system against the energy
absorbed by crack propagation.

Obriemoff noticed that the cracks in his experiment did not achieve
their equilibrium length instantly, but that on insertion of the wedge they
jumped forward and then gradually crept to their final length. When he
conducted the experiment in vacuum, however, he did not observe this
transient effect. Furthermore, the surface energy that he measured in
vacuum was about 10 times the surface energy measured in ambient atmos-
phere. He was thus the first to observe the important effect of the chemical
environment on the weakening of brittle solids and the subcritical crack
growth that results from this effect. This effect is very important in brittle
processes in rock and will be discussed in more detail in Section 1.3.2.

1.1.3 Fracture mechanics
Linear elastic fracture mechanics is an approach that has its roots in the
Griffith energy balance, but that lends itself more readily to the solution of
general crack problems. It is a continuum mechanics approach in which
the crack is idealized as a mathematically flat and narrow slit in a linear
elastic medium. It consists of analyzing the stress field around the crack
and then formulating a fracture criterion based on certain critical para-
meters of the stress field. The macroscopic strength is thus related to the
intrinsic strength of the material through the relationship between the
applied stresses and the crack-tip stresses. Because the crack is treated as
residing in a continuum, the details of the deformation and fracturing pro-
cesses at the crack tip are ignored.

The displacement field of cracks can be categorized into three modes
(Figure 1.5). Mode I is the tensile, or opening, mode in which the crack wall
displacements are normal to the crack. There are two shear modes: in-plane
shear, Mode II, in which the displacements are in the plane of the crack and
normal to the crack edge; and antiplane shear, Mode III, in which the dis-
placements are in the plane of the crack and parallel to the edge. The latter
are analogous to edge and screw dislocations, respectively.

If the crack is assumed to be planar and perfectly sharp, with no cohesion
between the crack walls, then the near-field approximations to the crack-tip
stress and displacement fields may be reduced to the simple analytic expres-
sions:

1.1 Theoretical concepts 9



�ij�Kn(2�r)�1/2fij(�) (1.19)

and

ui�(Kn/2E)(r/2�)1/2fi(�) (1.20)

where r is the distance from the crack tip and � is the angle measured from
the crack plane, as shown in Figure 1.6. Kn is called the stress intensity factor
and depends on mode, that is, KI, KII, and KIII, refer to the three correspond-
ing crack modes. The functions fij(�) and fi(�) can be found in standard refer-
ences (e.g., Lawn and Wilshaw, 1975), and are illustrated in Figure 1.6. The
stress intensity factors depend on the geometry and magnitudes of the
applied loads and determine the intensity of the crack-tip stress field. They
also can be found tabulated, for common geometries, in standard refer-
ences (e.g., Tada, Paris, and Irwin, 1973). The other terms describe only the
distribution of the fields.

In order to relate this to the Griffith energy balance it is convenient to
define an energy release rate, or crack extension force,

���d(�W
Ue)/dc (1.21)

which can be related to K by (Lawn and Wilshaw, 1975, page 56)

��K2/E (1.22)

for plane stress or

��K2(1��2)/E (1.23)

for plane strain (� is Poisson’s ratio). In Mode III, the right-hand sides of the
corresponding expressions must be multiplied by (1
�) for plane stress and

10 1 Brittle fracture of rock
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divided by (1��) for plane strain, respectively. From Equations (1.6) and
(1.7), it is clear that the condition for crack propagation will be met when

�c��2
c/E�2� (1.24)

for plane stress, with a corresponding expression for plane strain. Thus �c,
the critical stress intensity factor, and �c are material properties that, because
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they can be related to the applied stresses through a stress analysis, provide
powerful and general failure criteria. �c is also sometimes called the frac-
ture toughness, and �c the fracture energy.

A simple and useful case is when uniform stresses �ij are applied remote
from the crack, as in Figure 1.7. In this case the stress intensity factors are
given by

KI ��yy(�c)1/2

KII ��xy(�c)1/2 � (1.25)
KIII��zy(�c)1/2

and, using Equation (1.22), the corresponding crack extension forces, for
plane stress, are

�I �(�yy)
2�c/E

�II �(�xy)
2�c/E � (1.26)

�III�(�zy)
2�c(1
�)/E

In plane strain, E is relaced by E/(1��2) for Modes I and II.
Equation (1.25) may be compared with the approximate expression for

the stress concentration at the tip of an elliptical crack, Equation (1.5).
However, inspection of Equation (1.19) indicates that there is a stress singu-
larity at the crack tip. This results from the assumptions of perfect sharp-
ness of the slit. This is nonphysical, both because it internally violates the
assumption of linear elasticity, which implies small strains, and because no
real material can support an infinite stress. There must be a region of non-
linear deformation near the crack tip that relaxes this singularity. This can

12 1 Brittle fracture of rock
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be ignored in the fracture mechanics approach, because it can be shown
that the strain energy in the nonlinear zone is bounded, and because the
small nonlinear zone does not significantly distort the stress field at greater
distances from the crack. It is, of course, of paramount importance for
studies concerned with the detailed mechanics of crack advancement, but
it suffices here to state that linear elastic fracture mechanics is not appli-
cable at that scale or if there is large-scale yielding.

Within the nonlinear zone distributed cracking, plastic flow, and other
dissipative processes may occur that contribute to the crack extension
force. To account for these additional contributions we can rewrite
Equation (1.24) as

�c�2� (1.27)

where � is a lumped parameter that includes all dissipation within the
crack-tip region. This failure criterion is associated with the work of Irwin
(1958). The fact that we do not usually know the specific processes that con-
tribute to G is not normally of practical significance because � still can be
evaluated if mechanical measurements can be made suitably outside the
nonlinear zone (because integration around the crack tip is path-indepen-
dent (Rice, 1968)).

A more serious problem, for geological applications, lies in the fracture
mechanics assumption that the crack is cohesionless behind the crack tip.
In shear motion on a fault, friction will exist over all the fault, and work
done against this friction will become a significant term in an energy
balance describing this process. As will be discussed in more detail in
Section 4.2.1, it is not possible to evaluate this frictional work term and so
solve for the energy partition in earthquakes. In terms of the present
context, this means that, for the shear modes, Equations (1.24) and (1.27) are
reduced to the status of local stress fracture criteria as opposed to global cri-
teria tied to an energy balance.

1.1.4 Crack models
Faults and joints are naturally occurring shear and opening mode cracks,
and earthquakes, which produce increments of slip within a limited area of a
fault surface, may also be represented as shear cracks. Because we often have
data on the relative displacements across such features, we wish to know the
slip distributions expected from crack models and the relationship of those

1.1 Theoretical concepts 13



to the driving stresses. A crack model is one in which a stress drop is specified
on a discontinuity within a stressed solid and the resulting displacements of
the crack wall calculated. In fracture mechanics the cracks are assumed to be
cohesionless and so the stress drop is equal to the applied stress. When apply-
ing such models to faults, we instead assume that the stress drop �� is the
applied stress less the residual friction stress on the fault. Notice the differ-
ence between a crack model and a dislocation model. In the latter the
displacements on the discontinuity are specified, and the resulting deforma-
tions of the solid are calculated.

There are three types of crack models which we will consider in later
chapters and which will therefore be introduced here.

Elastic crack model The theory of elastic cracks is treated in most stan-
dard textbooks in the theory of elasticity. A useful review with applications
to geological problems is given by Pollard and Segall (1987). Consider a
crack in an elastic body subjected to uniform stresses with the geometry
shown in Figure 1.7. Relative displacements across the crack walls for the
three crack modes are:

Mode I �uy ��yy

Mode II ��ux�� ���xy� (c2 �x2)1/2 (1.28)

Mode III �uz ��zy

Notice that the displacement distributions (Figure 1.8(a)) are elliptical for
all modes, and their magnitudes increase linearly with the driving stresses
and with the crack half-width c. The driving stress for the Mode I crack is the
applied normal stress less the pore pressure in the crack, p. The driving
stresses for the shear modes are the applied shear stresses less the residual
friction stress �f. The displacement distribution for a circular crack of
radius c is (Eshelby, 1957),

�u(x, y)� [c2 � (x2 
y2)]1/2 (1.29)

Stress and displacement fields for elastic cracks are useful for analyzing
crack interactions and are given, for selected cases, by Pollard and Segall
(1987). 

As noted in the previous section, these models have a stress singularity at

24

7�

��
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the crack tip. Therefore, they are not applicable in the vicinity of the crack
tip. As will be noted in Section 3.2, displacement profiles for faults show a
finite taper in the vicinity of the tip. This implies that some inelastic defor-
mation has occurred near the fault tip to relax the stress singularity.
Therefore, to study fault growth we need to examine crack models which
include some yielding in the tip region. The next two models discussed
were originally developed for the Mode I case (which is the main topic of
engineering fracture mechanics). But, noting the above observation that
the form of the displacement distribution does not depend on mode, here
we discuss them in reference to the shear case.

1.1 Theoretical concepts 15

Fig. 1.8. The slip

distributions for three

types of crack models.

(a) Elastic model

(b) Dugdale model

(c) Small-scale yielding model



Dugdale–Barenblatt model This model (Dugdale, 1960; Barenblatt, 1962)
attempts to overcome the stress singularity problem of elastic crack models
by assuming that there is a yielding, or breakdown region s on the plane of
the crack in the vicinity of the tip. It does so by assuming that there is a
cohesive stress, �y, equal to the yield strength of the material, which resists
the crack driving stress in that region. For a shear crack with a residual fric-
tion stress �f, we substitute (�0 ��f) for �y (Cowie and Scholz, 1992a). The
displacement distribution on the crack is (Goodier and Field, 1963)

�u� cos� ln 
cos�2 ln (1.30)

where

cos��2x/c for |x|�c/2 and cos�2�(c�2s)/c

This displacement distribution is shown in Figure 1.8(b). Displacements
near the tip taper concavely towards the tip, maintaining the stresses in the
breakdown region s at a constant finite value �0. Notice that, as in the
elastic crack model, the displacement magnitudes scale linearly with stress
drop (�0 ��f) and with crack half-length. This model reduces to the elastic
crack model in the limit that �0 tends to infinity.

The ogee form of this slip distribution is due to the contrived way in
which the yielding is assumed to occur only on the plane of the crack. This
form is seldom seen in real fault displacement profiles, which more often
exhibit linear tapers in the tip region (Section 3.2). Furthermore, in Section
3.2 we also present evidence that inelastic deformation occurs within a
volume surrounding fault tips. We need to consider, then, a model which
contains those features.

CFTT model Numerical models have been investigated in which yield-
ing is allowed to occur within a volume surrounding the crack tip. Such
‘small-scale yielding’ models (Kanninen and Popelar, 1985; Wang et al.,
1995) have displacement distributions as illustrated in Figure 1.8(c). The
magnitude of the displacements scales in the same way as in the other
crack models, but now the displacements taper linearly towards the tips.
The slope of this taper is called the crack tip opening angle (CTOA) in
the Mode I case, and here we will refer to it as the fault tip taper, FTT, for the
shear case. It is found to be proportional to the yield strength of the

(sin�2 
 sin�)2

(sin�2 � sin�)2�sin2(�2 � �)
sin2(�2 
 �)

(1 � v) (�0 � �f)c
2�� �
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material. A constant CTOA model most accurately duplicates experimental
results of crack propagation in ductile materials such as stainless steel,
where the CTOA is observed to be constant during crack growth and the
J-resistance (a measure of �) is observed to increase linearly with crack
length. As we shall see in Section 3.2.2, both of these properties are
observed for fault growth. Therefore, a constant FTT (or CFTT) model is the
most realistic model for fault growth. Because these models cannot be
expressed analytically, they have not found much use in the fault mechan-
ics literature. Nevertheless, we will find it useful to use their properties in
interpreting data regarding displacement gradients near fault tips.

1.1.5 Macroscopic fracture criteria
The theory of fracture discussed above specifies the conditions under which
an individual crack will propagate in an elastic medium. We will show in
Section 1.2, however, that only in one special case, that of tensile fracture of
a homogeneous elastic material, do these theories also predict the macro-
scopic strength. In describing the strength of rock under general stress con-
ditions, we are forced to use criteria which are empirical or semi-empirical.
Such fracture criteria had been well established by the end of the nine-
teenth century and hence predate the theoretical framework that has been
described so far.

In formulating a fracture criterion we seek a relationship between the
principal stresses �1	�2	�3 (compression is positive) that defines a limit-
ing failure envelope of the form

�1�f (�2, �3) (1.31)

with some parameters with which we can characterize the material.
One such criterion, which experiment shows is generally adequate, is

that tensile failure will occur, with parting on a plane normal to the least
principal stress, when that stress is tensile and exceeds some value T0, the
tensile strength. Thus,

�3��T0 (1.32)

Shear failure under compressive stress states is commonly described
with the Coulomb criterion (often called the Navier–Coulomb, and some-
times the Coulomb–Mohr criterion). This evolved from the simple frictional
criterion for the strength of cohesionless soils,
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����n (1.33)

by the addition of a “cohesion” term �0. Thus

���0
��n (1.34)

where � and �n are the shear and normal stresses resolved on any plane
within the material. The parameter � is called the coefficient of internal fric-
tion and is often written tan �, � being called the angle of internal friction.
This criterion is shown in Figure 1.9, together with a Mohr circle from
which the relationships between the failure planes and stresses can be
deduced readily. From the Mohr circle it can be seen that failure will occur
on two conjugate planes oriented at acute angles

���/4 � �/2 (1.35)

on either side of the �1 direction and will have opposite senses of shear.
From the geometry of Figure 1.9 one also can derive an expression of
Equation (1.34) in principal axes, which, after some trigonometric manipu-
lation, is found to be

�1[(�
2 
1)1/2 ��]��3[(�

2 
1)1/2 
�]�2�0 (1.36)

which is a straight line in the �1, �3 plane with intercept at the uniaxial
compressive strength,
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Fig. 1.9. Illustration of the Coulomb fracture criterion by means of a Mohr diagram.

The relationships between the parameters at failure may be worked out from the

geometry of the figure. On the right is shown the angular relationship between

fracture planes and the principal stresses.



C0 �2�0[(�
2 
 1)1/2 
�] (1.37)

This criterion is defined only for compressive stresses. To form a complete
criterion, we can specify this and combine Equation (1.36) with the tensile
strength criterion, Equation (1.32) (Jaeger and Cook, 1976, pages 94–9):

�1[(�
2 
1)1/2 ��]��3[(�

2 
1)1/2 
�]�2�0

�
when

�1 	C0[1�C0T0/4�0
2]

and (1.38)
�3��T0

when
�1 �C0[1�C0T0/4�0

2]

This criterion is strictly two-dimensional: there is no predicted effect of the
intermediate principal stress �2 on the strength.

The simple criterion for cohesionless soils, Equation (1.33), can be under-
stood in terms of a microscopic failure process. The parameter � is the fric-
tion coefficient between adjacent grains, which, in principle, can be
determined independently of the criterion. Also, � has a physical meaning:
it is the steepest angle of repose that the material can support. In contrast,
the coefficient of internal friction in the Coulomb criterion cannot be iden-
tified with any real friction coefficient, because the failure surface does not
exist prior to failure. For the same reason, one cannot simply interpret the
cohesion term as a pressure-independent strength that can be added simul-
taneously to this friction term. The Coulomb criterion thus may be viewed
as strictly empirical.

Griffith (1924) developed a two-dimensional fracture criterion in terms of
his theory of crack propagation. The underlying assumption of this criter-
ion is that macroscopic failure can be identified with the initiation of crack-
ing from the longest, most critically oriented Griffith crack. He analyzed
the stresses around an elliptical crack in a biaxial stress field and found the
most critical orientations that yielded the greatest tensile stress concentra-
tions. He compared these results with that for a crack in uniaxial tension by
normalizing them to the uniaxial tensile strength. The resulting criterion is

(�1��3)
2�8T0(�1
�3)�0 if �1	�3�3

and � (1.39)
�3��T0 if �1��3�3
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The corresponding Mohr envelope is a parabola,

�2�4T0(�n
T0) (1.40)

(Jaeger and Cook, 1976, pages 94–9). For the tensile fracture portion of this
failure envelope, the most critically oriented crack is normal to �3. For the
shear portion, it is inclined at an angle � from the �1 direction given by

cos 2�� (�1 � �3)/(�1 
 �3)

This criterion is based on a microscopic failure mechanism. It has the
attractive feature of combining tensile and shear failure in a single criter-
ion. It predicts that C0�8T0, which, though smaller than generally
observed, is of the correct order. Like the Coulomb criterion, it does not
predict a �2 effect.

McClintock and Walsh (1962) pointed out that, under compressive stress
states, cracks would be expected to close at some normal stress �c and there-
after crack sliding would be resisted by friction. They reformulated the
Griffith criterion to admit this assumption and obtained the modified
Griffith criterion

[(1��2)1/2 �1](�1 ��3)�4T0(1
�c/T0)
1/2 
 2�(�3 ��c) (1.41)

which has the corresponding Mohr envelope

��2T0(1
�c/T0)
1/2
2�(�n ��c) (1.42)

This criterion, like the Coulomb criterion, predicts a linear relationship
between the stresses. If we assume further that �c is negligibly small, we
obtain the simplified forms

[(1��2)1/2 ��](�1 ��3)�4T0 
2��3 (1.43)

and

��2T0
��n (1.44)

which are identical with the Coulomb criterion, with �0�2T0, and � now
identified with the friction acting across the walls of preexisting cracks.
This led Brace (1960) to suggest that this formed the physical basis for the
Coulomb criterion.

These several criteria are compared in Figure 1.10 in (�1, �3) and (�, �n)
coordinates. They all, to an extent, account for the first-order strength prop-
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