CONTENTS

List of figures page ix
List of tables xii
Preface xiii

PART I THE ROLE OF ANALYTICAL CHEMISTRY IN ARCHAEOLOGY 1

1. ARCHAEOLOGY AND ANALYTICAL CHEMISTRY 3
 1.1 The history of analytical chemistry in archaeology 5
 1.2 Basic archaeological questions 10
 1.3 Questions of process 25

2. AN INTRODUCTION TO ANALYTICAL CHEMISTRY 31
 2.1 What is chemistry? 31
 2.2 Analytical chemistry 38
 2.3 Special considerations in the analysis of archaeological material 42

PART II THE APPLICATION OF ANALYTICAL CHEMISTRY TO ARCHAEOLOGY 45

3. ELEMENTAL ANALYSIS BY ABSORPTION AND EMISSION SPECTROSCOPIES IN THE VISIBLE AND ULTRAVIOLET 47
 3.1 Optical emission spectroscopy (OES) 47
 3.2 Atomic absorption spectroscopy (AAS) 48
 3.3 Inductively coupled plasma atomic emission spectroscopy (ICP–AES) 57
 3.4 Comparison of analysis by absorption/emission spectrometries 60
 3.5 Greek pots and European bronzes – archaeological applications of emission/absorption spectrometries 62

4. MOLECULAR ANALYSIS BY ABSORPTION AND RAMAN SPECTROSCOPY 70
 4.1 Optical and UV spectrophotometry 70
 4.2 Infrared absorption spectroscopy 77
Table of Contents

4.3 Raman spectroscopy 83
4.4 Soils, bone, and the “Baltic shoulder” – archaeological applications of vibrational spectroscopy 85

5. X-RAY TECHNIQUES AND ELECTRON BEAM MICROANALYSIS 93
5.1 Introduction to X-rays 93
5.2 X-ray fluorescence (XRF) spectrometry 101
5.3 Electron microscopy as an analytical tool 109
5.4 X-ray diffraction 113
5.5 Other X-ray related techniques 116
5.6 A cornucopia of delights – archaeological applications of X-ray analysis 118

6. NEUTRON ACTIVATION ANALYSIS 123
6.1 Introduction to nuclear structure and the principles of neutron activation analysis 123
6.2 Neutron activation analysis in practice 128
6.3 Practical alchemy – archaeological applications of NAA 130

7. CHROMATOGRAPHY 137
7.1 Principles of chromatography 137
7.2 Classical liquid column chromatography 139
7.3 Thin layer chromatography (TLC) 139
7.4 Gas chromatography (GC) 142
7.5 High performance liquid chromatography (HPLC) 146
7.6 Sticky messengers from the past – archaeological applications of chromatography 147

8. MASS SPECTROMETRY 160
8.1 Separation of ions by electric and magnetic fields 160
8.2 Light stable isotopes (δ^2D, $\delta^{13}C$, $\delta^{15}N$, $\delta^{18}O$, and $\delta^{34}S$) 169
8.3 Heavy isotopes (Pb, Sr) – thermal ionization mass spectrometry (TIMS) 173
8.4 Combined techniques – GC-MS 174
8.5 Isotope archaeology – applications of MS in archaeology 176

9. INDUCTIVELY COUPLED PLASMA–MASS SPECTROMETRY (ICP–MS) 195
9.1 Types of ICP analysis 195
9.2 Comparison with other techniques 200
9.3 Instrument performance 202
9.4 Splitting hairs – archaeological applications of ICP–MS 208
Contents

PART III SOME BASIC CHEMISTRY FOR ARCHAEOLOGISTS 215

10. ATOMS, ISOTOPES, ELECTRON ORBITALS, AND THE PERIODIC TABLE 217
 10.1 The discovery of subatomic particles 217
 10.2 The Bohr–Rutherford model of the atom 227
 10.3 Stable and radioactive isotopes 230
 10.4 The quantum atom 238
 10.5 The periodic table 243

11. VALENCY, BONDING, AND MOLECULES 249
 11.1 Atoms and molecules 249
 11.2 Bonds between atoms 253
 11.3 Intermolecular bonds 258
 11.4 Lewis structures and the shapes of molecules 260
 11.5 Introduction to organic compounds 263
 11.6 Isomers 269

12. THE ELECTROMAGNETIC SPECTRUM 275
 12.1 Electromagnetic waves 275
 12.2 Particle–wave duality 279
 12.3 Emission lines and the Rydberg equation 281
 12.4 Absorption of EM radiation by matter – Beer’s law 286
 12.5 The EM spectrum and spectrochemical analysis 288
 12.6 Synchrotron radiation 290

13. PRACTICAL ISSUES IN ANALYTICAL CHEMISTRY 294
 13.1 Some basic procedures in analytical chemistry 294
 13.2 Sample preparation for trace element and residue analysis 302
 13.3 Standards for calibration 306
 13.4 Calibration procedures and estimation of errors 309
 13.5 Quality assurance procedures 319

Epilogue 322

Appendices 326

I Scientific notation 326
II Significant figures 327
III Seven basic SI units 328
IV Physical constants 329
V Greek notation 330
VI Chemical symbols and isotopes of the elements 331
VII Electronic configuration of the elements (to radon, Z = 86) 335
Contents

VIII Some common inorganic and organic sample preparation methods used in archaeology 337
IX General safe practice in the laboratory 340
X COSHH assessments 342

References 350
Index 391