Analytical Chemistry in Archaeology

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike.

MARK POLLARD is Edward Hall Professor of Archaeological Science, Research Laboratory for Archaeology and the History of Art, University of Oxford.

CATHY BATT is Senior Lecturer in Archaeological Sciences, University of Bradford.

BEN STERN is Lecturer in Archaeological Sciences, University of Bradford.

SUZANNE M. M. YOUNG is NASA Researcher and Lecturer in Chemistry at Tufts University.
CAMBRIDGE MANUALS IN ARCHAEOLOGY

General Editor
Graeme Barker, University of Cambridge

Advisory Editors
Elizabeth Slater, University of Liverpool
Peter Bogucki, Princeton University

Books in the series
Pottery in Archaeology, Clive Orton, Paul Tyers, and Alan Vince
Vertebrate Taphonomy, R. Lee Lyman
Photography in Archaeology and Conservation, 2nd edn, Peter G. Dorrell
Alluvial Geoarchaeology, A.G. Brown
Shells, Cheryl Claasen
Zooarchaeology, Elizabeth J. Reitz and Elizabeth S. Wing
Sampling in Archaeology, Clive Orton
Excavation, Steve Roskams
Teeth, 2nd edn, Simon Hillson
Lithics, 2nd edn, William Andrefsky Jr.
Geographical Information Systems in Archaeology, James Conolly and Mark Lake
Demography in Archaeology, Andrew Chamberlain
Analytical Chemistry in Archaeology, A.M. Pollard, C.M. Batt, B. Stern, and S.M.M. Young

Cambridge Manuals in Archaeology is a series of reference handbooks designed for an international audience of upper-level undergraduate and graduate students, and professional archaeologists and archaeological scientists in universities, museums, research laboratories, and field units. Each book includes a survey of current archaeological practice alongside essential reference material on contemporary techniques and methodology.
ANALYTICAL CHEMISTRY IN ARCHAEOLOGY

A.M. Pollard
Research Laboratory for Archaeology and the History of Art, University of Oxford, UK

C.M. Batt and B. Stern
Department of Archaeological Sciences, University of Bradford, UK

S.M.M. Young
NASA Researcher, Department of Chemistry, Tufts University, Medford, Massachusetts, USA
CONTENTS

List of figures page ix
List of tables xii
Preface xiii

PART I THE ROLE OF ANALYTICAL CHEMISTRY IN ARCHAEOLOGY

1. ARCHAEOLOGY AND ANALYTICAL CHEMISTRY 3
 1.1 The history of analytical chemistry in archaeology 5
 1.2 Basic archaeological questions 10
 1.3 Questions of process 25

2. AN INTRODUCTION TO ANALYTICAL CHEMISTRY 31
 2.1 What is chemistry? 31
 2.2 Analytical chemistry 38
 2.3 Special considerations in the analysis of archaeological material 42

PART II THE APPLICATION OF ANALYTICAL CHEMISTRY TO ARCHAEOLOGY

3. ELEMENTAL ANALYSIS BY ABSORPTION AND EMISSION SPECTROSCOPIES IN THE VISIBLE AND ULTRAVIOLET 47
 3.1 Optical emission spectroscopy (OES) 47
 3.2 Atomic absorption spectroscopy (AAS) 48
 3.3 Inductively coupled plasma atomic emission spectroscopy (ICP–AES) 57
 3.4 Comparison of analysis by absorption/emission spectrometries 60
 3.5 Greek pots and European bronzes – archaeological applications of emission/absorption spectrometries 62

4. MOLECULAR ANALYSIS BY ABSORPTION AND RAMAN SPECTROSCOPY 70
 4.1 Optical and UV spectrophotometry 70
 4.2 Infrared absorption spectroscopy 77
Contents

4.3 Raman spectroscopy 83
4.4 Soils, bone, and the “Baltic shoulder” – archaeological applications of vibrational spectroscopy 85

5. X-RAY TECHNIQUES AND ELECTRON BEAM MICROANALYSIS 93
5.1 Introduction to X-rays 93
5.2 X-ray fluorescence (XRF) spectrometry 101
5.3 Electron microscopy as an analytical tool 109
5.4 X-ray diffraction 113
5.5 Other X-ray related techniques 116
5.6 A cornucopia of delights – archaeological applications of X-ray analysis 118

6. NEUTRON ACTIVATION ANALYSIS 123
6.1 Introduction to nuclear structure and the principles of neutron activation analysis 123
6.2 Neutron activation analysis in practice 128
6.3 Practical alchemy – archaeological applications of NAA 130

7. CHROMATOGRAPHY 137
7.1 Principles of chromatography 137
7.2 Classical liquid column chromatography 139
7.3 Thin layer chromatography (TLC) 139
7.4 Gas chromatography (GC) 142
7.5 High performance liquid chromatography (HPLC) 146
7.6 Sticky messengers from the past – archaeological applications of chromatography 147

8. MASS SPECTROMETRY 160
8.1 Separation of ions by electric and magnetic fields 160
8.2 Light stable isotopes (δD, δ13C, δ15N, δ18O, and δ34S) 169
8.3 Heavy isotopes (Pb, Sr) – thermal ionization mass spectrometry (TIMS) 173
8.4 Combined techniques – GC–MS 174
8.5 Isotope archaeology – applications of MS in archaeology 176

9. INDUCTIVELY COUPLED PLASMA–MASS SPECTROMETRY (ICP–MS) 195
9.1 Types of ICP analysis 195
9.2 Comparison with other techniques 200
9.3 Instrument performance 202
9.4 Splitting hairs – archaeological applications of ICP–MS 208
Contents

PART III SOME BASIC CHEMISTRY FOR ARCHAEOLOGISTS 215

10. ATOMS, ISOTOPES, ELECTRON ORBITALS, AND THE PERIODIC TABLE 217
 10.1 The discovery of subatomic particles 217
 10.2 The Bohr–Rutherford model of the atom 227
 10.3 Stable and radioactive isotopes 230
 10.4 The quantum atom 238
 10.5 The periodic table 243

11. VALENCE, BONDING, AND MOLECULES 249
 11.1 Atoms and molecules 249
 11.2 Bonds between atoms 253
 11.3 Intermolecular bonds 258
 11.4 Lewis structures and the shapes of molecules 260
 11.5 Introduction to organic compounds 263
 11.6 Isomers 269

12. THE ELECTROMAGNETIC SPECTRUM 275
 12.1 Electromagnetic waves 275
 12.2 Particle–wave duality 279
 12.3 Emission lines and the Rydberg equation 281
 12.4 Absorption of EM radiation by matter – Beer’s law 286
 12.5 The EM spectrum and spectrochemical analysis 288
 12.6 Synchrotron radiation 290

13. PRACTICAL ISSUES IN ANALYTICAL CHEMISTRY 294
 13.1 Some basic procedures in analytical chemistry 294
 13.2 Sample preparation for trace element and residue analysis 302
 13.3 Standards for calibration 306
 13.4 Calibration procedures and estimation of errors 309
 13.5 Quality assurance procedures 319

Epilogue 322

Appendices 326

 I Scientific notation 326
 II Significant figures 327
 III Seven basic SI units 328
 IV Physical constants 329
 V Greek notation 330
 VI Chemical symbols and isotopes of the elements 331
 VII Electronic configuration of the elements (to radon, Z = 86) 335
Contents

VIII Some common inorganic and organic sample preparation methods used in archaeology 337
IX General safe practice in the laboratory 340
X COSHH assessments 342
References 350
Index 391
FIGURES

3.1 Schematic diagram of an AAS spectrometer page 51
3.2 Beam chopper in AAS .. 52
3.3 Schematic diagram of an ICP torch 58
3.4 Schematic comparison of limits of detection in solution for various absorption/emission spectrometries 61
3.5 A “decision tree” for allocating European Bronze Age copper alloys to metal type 65
4.1 Copper sulfate pentaquo complex 71
4.2 Schematic diagram of a charge-coupled device (CCD) imaging sensor .. 76
4.3 Vibrational modes of a nonlinear triatomic molecule such as H₂O .. 78
4.4 Infrared correlation chart .. 79
4.5 Schematic diagram of a Fourier transform infrared (FTIR) spectrometer .. 81
4.6 Infrared absorption spectrum of phosphomolybdenum blue solution .. 86
4.7 Measurement of crystallinity index from IR spectrum of bone apatite .. 88
4.8 Infrared absorption spectrum of amber from the Baltic coast .. 90
4.9 FT–Raman spectrum of mammalian ivory .. 91
5.1 The X-ray emission and Auger processes .. 95
5.2 Electronic transitions giving rise to the K X-ray emission spectrum of tin .. 97
5.3 K and L absorption edges of tungsten .. 98
5.4 X-ray tube output spectrum .. 100
5.5 Comparison of EDXRF and WDXRF detection systems .. 103
5.6 Interaction of a beam of primary electrons with a thin solid sample .. 110
5.7 Derivation of Bragg’s law of X-ray diffraction .. 114
5.8 A Debye–Scherrer powder camera for X-ray diffraction .. 116
6.1 Schematic diagram of the nuclear processes involved in NAA .. 125
6.4 Diagram of classical liquid column chromatography .. 140
6.2 Diagram of a TLC plate .. 142
6.3 Derivatization of organic acid and alcohol compounds .. 143
6.7 Schematic diagram of a gas chromatography (GC) system .. 144
7.5 Schematic diagram of a high performance liquid chromatography (HPLC) system .. 147
6.6 Possible transformation processes of residues in or on pottery vessels .. 150
6.7 Structures of some fatty acids and sterols found in archaeological residues .. 151
7.8 2-methylbutadiene (C₅H₈), “the isoprene unit” .. 153
7.9 Some diagnostic triterpenoid compounds from birch bark tar .. 155
7.10 Some triterpenoid compounds found in mastic (Pistacia resin) .. 156
7.11 C₄₀ wax ester .. 157
x \hspace{1cm} Figures

7.12 Potential biomarkers in bitumen 158
8.1 Schematic diagram of electron impact (EI) source for mass spectrometry 162
8.2 Schematic diagrams of single focusing and double focusing mass spectrometers 165
8.3 Schematic diagram of a quadrupole mass spectrometer 167
8.4 Typical total ion count (TIC) of a bitumen extract from an archaeological shard obtained by GC–MS 176
8.5 Mass chromatogram for $m/z = 71$ 176
8.6 Mass spectrum of C$_{34}$ n-alkane (C$_{34}$H$_{70}$) 178
8.7 Relationship between bone collagen carbon isotope ratio and latitude for modern carnivorous terrestrial mammals 180
8.8 Variations in mammalian bone collagen carbon and nitrogen isotope values over the last 40 000 radiocarbon years 181
8.9 Carbon isotope composition of human bone collagen from the lower Illinois Valley, North America 183
8.10 Carbon isotope ratios in bone collagen plotted against radiocarbon ages for British Mesolithic and Neolithic humans 187
8.11 Kernel density estimate of the lead isotope data for part of the Troodos orefield, Cyprus 193
9.1 The number of published scientific papers (1981–2003) with keywords relating to ICP and NAA 196
9.2 Schematic diagram of a quadrupole ICP–MS 198
9.3 Schematic diagram of a multicollector ICP–MS (MC–ICP–MS) 200
9.4 The first and second ionization energies for selected elements 203
9.5 ICP–MS survey data from masses 203 to 210 204
9.6 Examples of calibration lines produced during ICP–MS analysis 205
9.7 Sensitivity as a function of mass number in ICP–MS analysis 206
9.8 Trace element profile along a single hair using LA–ICP–MS 211
9.9 REE abundances from archaeological glass, showing the effect of chondrite normalization 212
10.1 Thomson’s method for measuring e/m, the mass-to-charge ratio of an electron 223
10.2 The radioactive stability of the elements 232
10.3 Schematic diagram of the four common modes of radioactive decay 237
10.4 Shapes of the s, p, and d atomic orbitals 240
10.5 Energy levels of atomic orbitals 242
10.6 The modern “extended” periodic table 246
11.1 Simple model of valency and bonding 253
11.2 Electronegativity values (χ) for the elements 255
11.3 Arrangement of atoms in an ionic solid such as NaCl 255
11.4 Metallic bonding 256
11.5 Covalent bonding 257
11.6 Variation of bond energy with interatomic distance for the hydrogen molecule 258
11.7 van der Waals’ bond caused by the creation of an instantaneous dipole 259
Figures

11.8 Dipole–dipole bonds in polar molecules such as HCl 260
11.9 Hydrogen bonding 261
11.10 Lewis structures of water (H₂O) 262
11.11 The resonance structure of a generalized organic acid RCOO⁻ 263
11.12 The three-dimensional tetrahedral structure of carbon 264
11.13 Hybridization of s- and p- atomic orbitals 265
11.14 σ- and π-bond formation 266
11.15 Four different representations of the structure of n-hexane, C₆H₁₄ 267
11.16 The Kekulé structures of benzene (C₆H₆) 267
11.17 Structure of 1,4-hexadiene 269
11.18 Two conformational isomers of ethane, C₂H₆ 272
11.19 Two structural isomers having the molecular formula C₄H₁₀ 272
11.20 Diastereoisomers of 2-butene 273
11.21 Stereoisomerism in 2-iodobutane (CH₃CH₂CHICH₃) 273
11.22 Determination of absolute configuration of a stereoisomer 274
12.1 Constructive and destructive interference 277
12.2 Sine wave representation of electromagnetic radiation 278
12.3 Regions of the electromagnetic spectrum 279
12.4 Young’s slits 280
12.5 The photoelectric effect 280
12.6 The emission spectrum of hydrogen in the UV, visible, and near infrared 282
12.7 Electronic transitions giving rise to the emission spectrum of sodium in the visible 284
12.8 Schematic plan of a synchrotron 291
13.1 Illustration of the terms accuracy and precision in analytical chemistry 314
13.2 Plot of hypothetical calibration data from Table 13.1 315
Tables

7.1 Definition of the four main chromatographic techniques
7.2 Structural formulas of the terpenoids groups
8.1 Typical mass fragment ions encountered during GC–MS of organic archaeological compounds
8.2 Some of the isotopes used in “isotope archaeology”
9.1 Abundance of REE in a chondrite meteorite used for normalization
10.1 Definition of electron orbitals in terms of the four orbital quantum numbers \((n, l, m_l, s)\)
11.1 Examples of calculating valency from the combining capacity of some simple compounds
11.2 Prefix for the number of carbons in the parent chain when naming organic compounds
11.3 Some common organic functional groups
12.1 The wavelengths of the major spectral lines in the emission spectrum of sodium
12.2 Relationship between the wavelength and source of electromagnetic radiation
13.1 Some hypothetical analytical calibration data
13.2 Critical values of \(t\) at the 95% confidence interval
The purpose of this book is to provide an introduction to the applications of analytical chemistry to archaeology. The intended audience is advanced students of archaeology, who may not have all of the required background in chemistry and physics, but who need either to carry out analytical procedures, or to use the results of such analyses in their studies. The book is presented in three parts. The first is intended to contextualize analytical chemistry for students of archaeology – it illustrates some of the archaeological questions which have been addressed, at least in part, by chemical analysis, and also chronicles some of the long history of interaction between chemistry and archaeology. Additionally, it introduces chemistry as a scientific discipline, and gives a brief historical introduction to the art and science of analytical chemistry.

The second part consists of seven chapters, which present a range of analytical techniques that have found archaeological application, grouped by their underlying scientific principles (absorption/emission of visible light, absorption of infrared, etc.). Each chapter describes the principles and instrumentation of the methods in some detail, using mathematics where this amplifies a point. The majority of each chapter, however, is devoted to reviewing the applications of the techniques to archaeology. We do not pretend that these application reviews are comprehensive, although we do hope that there are enough relevant references to allow the interested reader to find her or his way into the subject in some depth. We have also tried to be critical (without engaging in too much controversy), since the role of a good teacher is to instill a sense of enthusiastic but critical enquiry! Nor can we pretend that the topics covered in these chapters are exhaustive in terms of describing all of the analytical methods that have been, or could profitably be, applied to serious questions in archaeology. The critical reader will no doubt point out that her or his favorite application (e.g., NMR, thermal methods, etc.) is missing. All that we can say is that we have attempted to deal with those methods that have contributed the most over the years to archaeological chemistry. Perhaps more attention could usefully have been applied to a detailed analysis of how chemical data has been used in archaeology, especially when hindsight suggests that this has been unhelpful. It is a matter of some
debate as to whether it is worse to carry out superb chemistry in support of trivial or meaningless archaeology, or to address substantial issues in archaeology with bad chemistry. That, however, could fill another book!

In order for the intended audience of students to become “informed customers” or, better still, trainee practitioners, we present in the final part some of the basic science necessary to appreciate the principles and practice underlying modern analytical chemistry. We hope that this basic science is presented in such a way that it might be useful for students of other applied chemistry disciplines, such as environmental chemistry or forensic chemistry, and even that students of chemistry might find some interest in the applications of archaeological chemistry.

Chapters 10 and 11 introduce basic concepts in chemistry, including atomic theory and molecular bonding, since these are necessary to understand the principles of spectrometry, and an introduction to organic chemistry. Chapter 12 discusses some basic physics, including wave motion and the interaction of electromagnetic waves with solid matter. Chapter 13 is an introduction to some of the practicalities of analytical chemistry, including how to make up standard solutions, how to calibrate analytical instruments, and how to calculate such important parameters as the minimum detectable level of an analyte, and how to estimate errors. We also outline quality assurance protocols, and good practice in laboratory safety. Much of this material has been used in teaching the underlying maths, physics, and chemistry on the BSc in Archaeological Science at the University of Bradford, in the hope that these students will go on to become more than “intelligent consumers” of analytical chemistry. It is gratifying to see that a number of ex-students have, indeed, contributed significantly to the literature of archaeological chemistry.

In this background material, we have taken a decidedly historical approach to the development of the subject, and have, where possible, made reference to the original publications. It is surprising and slightly distressing to see how much misinformation is propagated through the modern literature because of a lack of acquaintance with the primary sources. We have also made use of the underlying mathematics where it (hopefully) clarifies the narrative. Not only does this give the student the opportunity to develop a quantitative approach to her or his work, but it also gives the reader the opportunity to appreciate the underlying beauty of the structure of science.

This book has been an embarrassing number of years in gestation. We are grateful for the patience of Cambridge University Press during this process. We are also grateful to a large number of individuals, without whom such a work could not have been completed (including, of course, Newton’s Giants!). In particular, we are grateful to Dr Janet Montgomery, who helped to collate some of the text and sought out references, and to Judy Watson, who constructed the figures. All errors are, of course, our own.