
C H A P T E R

1 Materials and materials properties

“We proceed to distribute the figures [solids] we have described between fire,

earth, water, and air � � � Let us assign the cube to earth, for it is the most immobile

of the four bodies and most retentive of shape; the least mobile of the remaining

figures (icosahedron) to water; the most mobile (tetrahedron) to fire; the interme-

diate (octahedron) to air. There still remained a fifth construction (dodecahedron),

which the god used for embroidering the constellations on the whole heaven.”

Plato, Timaeus, 427–347 BC

1.1 Materials and structure

The practice of using organic and inorganic materials is many millennia old.
Oxide pigments were used in early cave paintings, flint tools were used in
the Stone Age and precious metal smelting was prevalent in the Nile Valley
as early as 5000 years ago (Klein and Hurlbut, 1985). Extractive metallurgy
led to the use of metals in the Bronze Age and Iron Age. The extraordinary
advances made possible by electronic materials have led some to suggest that
we are in the midst of the Silicon Age. It is clear that the prior materials ages
evolved slowly through the accumulation of empirical knowledge. The present
materials age is evolving at a more rapid pace through the development of
synthesis, structure, properties and performance relationships, the materials
paradigm.
In this book, we will introduce many concepts, some of them rather

abstract, that are used to describe solids. Since most materials are ultimately
used in some kind of application, it seems logical to investigate the link
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2 Materials and materials properties

between the atomic structure of a solid, and the resulting macroscopic prop-
erties. After all, that is what the materials scientist or engineer is really
interested in: how can we make a material useful for a certain task?
What type of material do we need for a given application? And why can
some materials not be used for particular applications? All these questions
must be answered when a material is considered as part of a design. The
main focus of the book is on the fundamental description of the posi-
tions and types of the atoms, the ultimate building blocks of solids, and
on the experimental techniques used to determine how these atoms are
arranged.
We now know that many of the materials we use every day are crys-

talline. The concept of crystalline solids and the development of experimental
techniques to characterize crystals are recent developments, although certain
kernels of thought on the basic building blocks of solids can be traced to much
earlier times. For example, the quote beginning this chapter is attributed to
the Greek philosopher Plato (427–348/347 BC); in his dialogue Timaeus, he
discussed his theory of the structure of matter. He postulated that the basic
particles of earth, air, fire, and water had the form of the regular Platonic
solids (Fig. 1.1). Plato believed that it was possible to group these basic
particles into crystal shapes that filled space. In our current understanding of
the structure of solids, the shapes that are combined to fill space are known
as unit cells, and we distinguish seven major shapes, more formally known
as the seven crystal systems.

For crystalline solids we will define a standardized way to describe crystal
structures. We will also describe experimental methods to determine where the
atoms are in a given crystal structure. We will rely on mathematical techniques
to develop a clear and unambiguous description of crystal structures, including
rules and tools to perform crystallographic computations (e.g., what is the
distance between two atoms, or the bond angle between two bonds, etc.).
We will introduce the concept of symmetry, a unifying theme that will allow
us to create classifications for crystal structures.

Fig. 1.1. The five Platonic
solids: (a) cube, (b)
tetrahedron, (c) octahedron,
(d) icosahedron, and
(e) pentagonal dodecahedron.

(a) (b) (c)

(d) (e)
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3 1.2 Organization of the book

1.2 Organization of the book

The first half of the book, Chapters 1 through 13, deals with the basics of
crystallography. It covers those aspects of crystallography that are mostly
independent of any actual material, although we will frequently use actual
materials as examples to clarify certain concepts and as illustrations. The
second half of the book, Chapters 15 through 25, looks at the structure of
broad classes of materials. In these chapters, we consider metals, oxides,
and molecular solids. This subject matter helps the reader build an under-
standing of atomic structures, from simple to complex. Where possible, we
also illustrate technologically important materials. In these later chapters, we
will introduce many geometrical principles that can be used to understand
the structure of materials. Such principles enrich the material presented in
Chapters 1 through 13, and allow us to gain insight into the structure of
quasicrystalline and amorphous materials discussed in advanced chapters in
the second half of the text.
Chapter 14 forms the connection between the two halves of the book: it

illustrates how techniques of the first half are used to study the structures of
the second half. We will discuss this connection by means of four different
materials, which will be introduced later in this first chapter. Some topics
are more advanced than others, and we have indicated these sections with an
asterisk at the start of the section title. Each chapter has an extensive problem
set, dealing with the concepts introduced in that chapter. At the end of each
chapter, we have included a short historical note, highlighting how a given
topic evolved, listing who did what in a particular subfield of crystallography,
or giving biographical information on important crystallographers.
In the later chapters, we give examples of crystallographic computations

that make use of the material presented in the earlier chapters. We illustrate
the relationship between structures and phases of matter, allowing us to make
elementary contact with the concept of a phase diagram. Phase relations
and phase diagrams combine knowledge of structures and thermodynamics.1

Prominent among the tools of a materials scientist are those that allow exam-
ination of structures on a nanoscale. Chapters in the latter half of the book
will have further illustrations of interesting nanostructures.
We begin, in this chapter, with a short discussion of length scales inmaterials.

Then we introduce the concepts of homogeneity and heterogeneity. We will
talk about material properties and propose a general definition for a material
property.We continuewith a discussion of the directional dependence of certain
properties and introduce the concepts of isotropy and symmetry. We conclude
the chapter with a preview of some of the things this book has to offer.

1 In a materials science or materials engineering curriculum, phase relations and diagrams are
typically the subject of the course following a structures course.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-65151-6 - Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry
Marc De Graef and Michael E. McHenry
Excerpt
More information

http://www.cambridge.org/0521651514
http://www.cambridge.org
http://www.cambridge.org


4 Materials and materials properties

1.3 About length scales

When we talk about crystals, most of us will think about the beautiful crys-
talline shapes that can be found in nature. Quartz crystals are ubiquitous, and
we can recognize them by their shape and color. Many naturally occurring
crystals have sizes in the range from a few millimeters to a few centimeters.
These are objects that we can typically hold in our hands. When it comes
to describing the structure of a crystal at the atomic level, we must reduce
the length of our measuring stick by many orders of magnitude, so it might
be useful to take a brief look at the relevant length scale. In addition, when
we wish to study, say, the distance between a pair of atoms, we must use an
experimental measuring stick that is capable of measuring such tiny distances.
The human eye is obviously not capable of “seeing atoms,” but there are
several alternative observation methods that are capable of operating at the
atomic length scale.
The size of an atom is of the order of 10−10 meters. This particular distance

is known as the Ångström, i.e., 1Å≡ 10−10 m. It is convenient to stick to the
so-called metric system, and the closest standard metric unit is the length unit,
nanometer (nm), which is defined as 1nm ≡ 10−9 m, so that 1Å = 0�1nm.
In this book, we will use the nanometer as the standard unit of length, so
that we can express all other distances in terms of this unit. For instance,
1 micrometer (�m) equals 103 nm, and one millimeter (mm) is equal to
106 nm. An illustration of the range of object sizes from the atomistic to the
“human” length scale is shown in Fig. 1.2.2 The central vertical axis represents
the size range on a logarithmic scale; going up one tick mark means a factor
of 10 larger. To the right of the figure, there are a few examples of objects
for each size range. In the scientific community, we distinguish between a
few standard size ranges:

• macroscopic: objects that can be seen by the unaided eye belong to the
class of the macroscopic objects. An example is the quartz crystal shown
in the top circle to the right of Fig. 1.2.

• microscopic: objects that can be observed by means of optical microscopy.
The second circle from the top in Fig. 1.2 shows individual grains in
a SrTiO3 polycrystalline material. The lines represent the boundaries
between grains, the darker spots are pores in the ceramic material.

• nanoscale: objects with sizes between 1 nm and 100 nm. The third circle
shows a set of nano-size particles of a MnZn ferrite with composition
Mn0�5Zn0�5Fe2O4.

2 With “human length scale” we mean objects that can be found in our societies: chairs,
houses, vehicles, and so on, i.e., objects with sizes typically less than 102 m or 1011 nm. In
this book, we will have no need for larger sizes.
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5 1.3 About length scales

Fig. 1.2. Schematic illustration
of the various length scales,
from macroscopic, to
microscopic, to nanoscale, to
the subatomic. The left hand
side of the figure shows the
experimental techniques that
are used to cover the various
length scales. The images in
the circles on the right are
(from the top down): a quartz
crystal (courtesy of D. Wilson);
grains in a SrTiO3 ceramic
(courtesy of G. Rohrer);
nano-crystalline particles of
Mn0�5Zn0�5Fe2O4 (courtesy of
R. Swaminathan); atomic
resolution image of BaTiO3.
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• atomistic: the bright dots in this image correspond to the Ba and Ti ions in
a tetragonal BaTiO3 crystallite. This is a so-called high resolution image,
obtained by transmission electron microscopy, where one can distinguish
individual columns of atoms with a distance between the atoms of around
0.2 nm.

The ability to observe an object of a certain size is closely linked to the
wave length of the radiation used for the observation. Consider circular waves
that travel on a large pond after you toss a rock into the water. If an object,
much smaller than the distance between the crests of the waves (the wave
length), floats on the water nearby, then the waves will pass by the object
without being perturbed by the object; the object will move up and down with
the passing waves. If the object is large compared to the wave length, say, a
concrete pillar or a wall, then the waves will be perturbed, since they have
to travel around the object; often, part of the waves will be reflected by the
object. If waves are not perturbed by an object, then this object is essentially
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6 Materials and materials properties

invisible to those waves. If we use visible light, with a wave length of around
500 nm, to look at viruses (with a typical size between 3 and 300 nm), then the
light waves will not be perturbed significantly by the viruses, and, therefore,
we will not be able to observe viruses using optical microscopy methods.
To determine the smallest thing the human eye can see, we must understand

the structure of the eye. The human eye is a sphere with an approximate
diameter of 25mm. It has a lens with an opening (pupil) of about 3.5mm. The
inside back surface of the eye is covered with two types of light receptors:
rods and cones. The cones are concentrated in a small area, 0.3mm diameter,
directly opposite the lens. This area is known as the fovea. There are about
15000 cones in the fovea, leading to a cone density of about 200000 per
mm2. Each cone is about 1�5�m in diameter, and the average spacing between
cones is 2�5�m. For convenience, we can imagine the cones to be packed in
a hexagonal array, as shown by the small gray disks in Fig. 1.3.
If we consider an object at a distance of 250mm from the eye, then this

object will be imaged by the lens onto the fovea with a magnification factor
of M = 0�068 (Walker, 1995). Consider a set of narrowly spaced lines, with
a line density of � lines per millimeter (lpm). The eye lens will image this
grid of lines onto the fovea, so that the line density at the fovea becomes
�f = �/M (since the eye demagnifies the object size, the line density will
become larger). The highest line density that can be “seen” by the fovea
corresponds to each line being projected onto a row of cones, and the next
row does not have a line projected on it. Since the average spacing of the
cones is 2�5�m, the smallest possible distance at which the lines can still be
resolved by individual rows of cones is 2�5

√
3 = 4�3�m. A line spacing of

4�3�m leads to a line density at the fovea of �f = 230 lpm, which corresponds
to a line density at the object of 15.6 lpm. So, at a distance of 250mm, the
human eye, in the best possible conditions, can see the individual lines in a
grid with about 16 lines per mm.
The discussion in the preceding paragraph describes an idealized case;

in reality, the highest resolvable line density at a distance of 250mm

Fig. 1.3. Schematic illustration
of the resolution of the human
eye. The lower portion shows
the fovea as a hexagonal array
of cones, the top view shows
the angular resolution of the
eye in terms of the eye–object
distance, the angle �, and the
distance between individual
object lines.
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4.3 µm

Side view

Top view
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θ
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7 1.4 Wave–particle duality and the de Broglie relationship

is about 8 lpm. It is more convenient to express these numbers in terms of
the angle between two lines leaving the eye and reaching two neighboring
lines of the grid, as shown in the top view of Fig. 1.3. Simple trigonometry
shows that � = 0�125/250, so that � = 5×10−4 radians, or 0�029�, which is
equivalent to 1�7 arc minutes. Rounding up, we can say that the human eye
has a visual resolution limit of 2 arc minutes per line pair. Similar numbers
are obtained when the object consists of dots or other shapes. It should be
clear to the reader that the human eye is not capable of resolving microscopic
objects, let alone the distance between atoms.3

Returning to Fig. 1.2, the columns on the left hand side of the figure indicate
the range of applicability of a number of important materials characterization
methods. Each method relies on the use of a particular type of particle:
electrons, neutrons, and photons (or electromagnetic radiation). All three of
these methods are capable of producing information about the atomic structure
of matter. In this book, we will discuss mostly the use of X-rays for structure
determination, but we will also describe briefly how neutrons and electrons
can be used to obtain similar information.

1.4 Wave–particle duality and the de Broglie relationship

By the early part of the 20th century it had been established that electromag-
netic (EM) radiation (light) has both a wave and particle (photon) character,
the wave–particle duality. James Clerk Maxwell proposed a theory of elec-
tromagnetism (Maxwell’s equations) which put the wave nature of light on a
formal mathematical basis by the late nineteenth century. However, the pho-
toelectric effect was explainable only in terms of the particle aspects of light
(Albert Einstein, 1905). Einstein’s formula relates the energy of a photon, E,
to the frequency of radiation, 	:

E = h	� (1.1)

The wave length of electromagnetic radiation is related to the frequency, 	,
of the wave (the number of cycles per second) by means of the following
relation:

�= c
	
� (1.2)

3 It is noteworthy that the human eye, as compared to a digital camera, has a remarkably high
pixel density. While the cone and rod densities vary across the eye, on average, the eye
corresponds to a 600 megapixel camera for a 120� field of view! Of course, the eye
produces a continuous stream of images, more like a movie than a still image. Nevertheless,
the amount of information processed by the eye and brain is truly remarkable.
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8 Materials and materials properties

where c= 299792458m/s is the velocity of light in vacuum. A consequence
of Einstein’s explanation of the photoelectric effect was that EM waves could
be thought of as having particle-like momentum.
The wave length, �, of electromagnetic radiation spans many orders of

magnitude, from the long wave length radio waves (see Fig. 1.2) to visible
light to X-rays and gamma rays. Visible light cannot be used to observe the
atomistic length scale, but X-rays have a wave length that is comparable to the
distance between atoms. Hence, X-ray waves will be perturbed by atoms, and
we can make good use of this perturbation, as we will see in later chapters.
Similar relations can be derived for electrons and neutrons. Louis de

Broglie, using formulae from Einstein’s special theory of relativity, argued
that if electromagnetic waves also have a particle nature, should not particles
such as the electron also have a wave nature? For a particle with mass, m,
moving with velocity v, he proposed an associated wave characterized by the
wave length:

�= h
mv

� (1.3)

For electrons accelerated by a voltage, V , the electron wave length is given by:

�= h√
2m0eV

� (1.4)

where h = 6�626075×10−34 J s is Plank’s constant, e = 1�602177×10−19 C
is the electron charge, and m0 = 9�109389×10−31 kg is the rest mass of the
electron. In 1927, Davisson and Germer showed experimentally that elec-
trons do indeed have wave character by causing them to undergo diffraction
like X-rays, through a crystal lattice (Davisson and Germer, 1927a). This
experiment laid the basis for measuring crystal structures by the method of
low energy electron diffraction (LEED), and, later on, for the invention of
the transmission electron microscope.
In the case of high energy electrons where the accelerating voltage, V ,

is large, a relativistic correction is made and the electron wave length is
given by:

�= h√
2m0eV�1+

e

2m0c2
V�

� (1.5)

Table 1.1 lists a few representative electron wave lengths used in scanning
and transmission electron microscopes.
The wave length of neutrons also follows from the de Broglie relation:

�= h
mnv

� (1.6)
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9 1.5 What is a material property?

Table 1.1. Electron wave lengths (in pm) for selected acceleration voltages V for
scanning electron microscopes (left two columns) and transmission electron
microscopes (right two columns).

V (Volt) � (pm) V (Volt) � (pm)

1 000 38.76 100 000 3.701
5 000 17.30 200 000 2.508
10 000 12.20 300 000 1.969
20 000 8.59 400 000 1.644

1 000 000 0.872

where mn = 1�674929×10−27 kg is the neutron rest mass and v is its velocity.
However, neutrons are not charged particles and, therefore, they are not
accelerated by a voltage. Neutrons are created in nuclear fission processes
inside nuclear reactors, as described in more detail in Chapter 13. Typically,
a wide range of neutron velocities emerges from the reactor, and by selecting
only neutrons within a certain narrow velocity window, one can select a
particular wave length. For instance, to obtain a neutron with a wave length
of 0.1 nm, one would have to select a velocity window at v= 3�96×103 m/s,
or approximately 4 km/s. It is also possible to have neutrons reach thermal
equilibrium, so that their kinetic energy is:

Ekin =
1
2
mnv

2 = 3
2
kBT� (1.7)

where kB = 1�38× 10−23 J/molecule/K is the Boltzmann constant. The de
Broglie relation then becomes:

�= h√
3mnkBT

� (1.8)

1.5 What is a material property?

1.5.1 Definition of a material property

We choose materials to perform well in certain applications. For instance, we
use steel beams and cables in bridges, because they provide the strength and
load-bearing capacity needed. We use plastics in toys because they can be
molded into virtually any shape and they are strong and light weight. When
we use a material in a certain application, we know that it will be subjected
to particular external conditions, e.g., a constant load, or a high temperature,
or perhaps an electrical current running through the material. In all these
cases, we must make sure that the material responds in the desired way. For a
bridge deck held up by steel cables, we want the cables to retain their strength
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10 Materials and materials properties

all year round, regardless of the weather and temperature, and regardless of
the number of cars and trucks crossing the bridge. For a computer chip, we
want the semiconductor material to behave predictably for the lifetime of the
computer.
In general, we want a material to have a particular response to a given

external influence. This basic statement can be cast in more formal, math-
ematical terms. We will represent the external influence by the symbol � ,
which stands for Field. This could be an electrical or magnetic field, a tem-
perature field, the earth’s gravitational field, etc. The material will respond
to this field, and the Response is described by the symbol �. For instance,
the response of a steel beam to an external load (i.e., a weight at the end of
the beam) will be a deflection of the beam. The response of a conductor to
an electrical field applied between its two ends will be an electrical current
running through the conductor. In the most general sense, the relation between
field and response is described by:

�=��� �� (1.9)

i.e., the material response is a function of the externally applied field. It is
one of the tasks of a materials scientist to figure out what that function looks
like.
Once we recognize that the behavior of a material under certain external

conditions can be expressed in mathematical terms, we can employ mathe-
matical tools to further describe and analyze the response of this material. We
know from calculus that, for “well-behaved” functions, we can always expand
the function into powers of its argument, i.e., construct a Taylor expansion.4

For equation 1.9 above, the Taylor expansion around � = 0 is given by:

�=�0+
1
1!

��

��

∣∣∣∣
�=0

� + 1
2!

�2�

�� 2

∣∣∣∣
�=0

� 2+ 1
3!

�3�

�� 3

∣∣∣∣
�=0

� 3+ � � � (1.10)

where �0 describes the “state” of the material at zero field. There are two
possibilities for �0:

(i) �0 = 0: in the absence of an external field (� = 0), there is no permanent
(or remanent) material response. For example, if the external field is an
applied stress, and the material response is a strain, then at zero stress
there is no strain (assuming linear elasticity).

4 Recall that a Taylor expansion of a function f�x� around x = 0 is given by

f�x�= f�0�+
�∑
n=1

1
n!

dnf
dxn

∣∣∣∣
x=0

xn

where n! = 1×2×3× � � �× �n−1�×n is the factorial of n. If the function f depends on
other variables in addition to x, then the derivatives dn/dxn must be replaced by partial
derivatives �n/�xn.
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