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1

Prologue

More than 100 elements are now known to exist, distinguished from each

other by the electric charge Ze on the atomic nucleus. This charge is

balanced by the charge carried by the Z electrons which together with

the nucleus make up the neutral atom. The elements are also distin-

guished by their mass, more than 99% of which resides in the nucleus.

Are there other distinguishing properties of nuclei? Have the nuclei been

in existence since the beginning of time? Are there elements in the

Universe which do not exist on Earth? What physical principles underlie

the properties of nuclei? Why are their masses so closely correlated with

their electric charges? Why are some nuclei radioactive? Radioactivity is

used to man's bene®t in medicine. Nuclear ®ssion is exploited in power

generation. But man's use of nuclear physics has also posed the terrible

threat of nuclear weapons.

This book aims to set out the basic concepts which have been devel-

oped by nuclear physicists in their attempts to understand the nucleus.

Besides satisfying our appetite for knowledge, these concepts must be

understood if we are to make an informed judgment on the bene®ts

and problems of nuclear technology.

After the discovery of the neutron by Chadwick in 1932, it was

accepted that a nucleus of atomic number Z was made up of Z protons

and some number N of neutrons. The proton and neutron were then

thought to be elementary particles, although it is now clear that they

are not but rather are themselves structured entities. We shall also see

that in addition to neutrons and protons several other particles play an

important, if indirect, role in the physics of nuclei. In this and the follow-

ing two chapters, to provide a background to our subsequent study of the
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nucleus, we shall describe the elementary particles of nature, and their

interactions, as they are at present understood.

1.1 Fermions and bosons

Elementary particles are classi®ed as either fermions or bosons. Fermions

are particles which satisfy the Pauli exclusion principle: if an assembly of

identical fermions is described in terms of single-particle wave-functions,

then no two fermions can have the same wave-function. For example,

electrons are fermions. This rule explains the shell structure of atoms and

hence underlies the whole of chemistry. Fermions are so called because

they obey the Fermi±Dirac statistics of statistical mechanics.

Bosons are particles which obey Bose±Einstein statistics, and are

characterised by the property that any number of particles may be

assigned the same single-particle wave-function. Thus, in the case of

bosons, coherent waves of macroscopic amplitude can be constructed,

and such waves may to a good approximation be described classically.

For example, photons are bosons and the corresponding classical ®eld is

the familiar electromagnetic ®eld E and B, which satis®es Maxwell's

equations.

At a more fundamental level, these properties are a consequence of

the possible symmetries of the wave-function of a system of identical

particles when the coordinates of any two particles are interchanged. In

the case of fermions, the wave-function changes sign; it is completely anti-

symmetric. In the case of bosons the wave-function is unchanged; it is

completely symmetric.

There is also an observed relation between the intrinisc angular

momentum, or spin, of a particle and its statistics. The intrinsic spin s

is quantised, with spin quantum number s (see Appendix C). For a fer-

mion, s takes one of the values 1
2,

3
2,

5
2, . . .; for a boson, s takes one of the

values 0, 1, 2, . . . . A theoretical explanation of this relationship can be

given within the framework of relativistic quantum ®eld theory.

1.2 The particle physicist's picture of nature

Elementary particle physics describes the world in terms of elementary

fermions, interacting through ®elds of which they are sources. The parti-

cles associated with the interaction ®elds are bosons. To take the most

familiar example, an electron is an elementary fermion; it carries electric

charge ±e and this charge produces an electromagnetic ®eld E, B, which

2 Prologue



exerts forces on other charged particles. The electromagnetic ®eld, quan-

tised according to the rules of quantum mechanics, corresponds to an

assembly of photons, which are bosons. Indeed, Bose±Einstein statistics

were ®rst applied to photons.

Four types of interaction ®eld may be distinguished in nature (see

Table 1.1). All of these interactions are relevant to nuclear physics,

though the gravitational ®eld becomes important only in densely aggre-

gated matter, such as stars. Gravitational forces act on all particles and

are important for the physics on the large scale of macroscopic bodies. On

the small scale of most terrestrial atomic and nuclear physics, gravita-

tional forces are insigni®cant and except in Chapter 10 and Chapter 11 we

shall ignore them.

Nature provides an even greater diversity of elementary fermions

than of bosons. It is convenient to divide the elementary fermions into

two classes: leptons, which are not sources of the strong ®elds and hence

do not participate in the strong interaction; and quarks, which take part

in all interactions.

The electron is an example of a lepton. Leptons and their interactions

are described in Chapter 2. Quarks are always con®ned in compound

systems which extend over distances of about 1 fm. The term hadron is

used generically for a quark system. The proton and neutron are hadrons,

as are mesons. The proton and neutron are the subject matter of

Chapter 3.

1.3 Conservation laws and symmetries: parity

The total energy of an isolated system is constant in time. So also are its

linear momentum and angular momentum. These conservation laws are

derivable from Newton's laws of motion and Maxwell's equations, or

from the laws of quantum mechanics, but they can also, at a deeper

1.3 Conservation laws and symmetries: parity 3

Table 1.1. Types of interaction ®eld

Interaction ®eld Boson Spin

Gravitational ®eld `Gravitons' postulated 2

Weak ®eld W+, Wÿ, Z particles 1

Electromagnetic ®eld Photons 1

Strong ®eld `Gluons' postulated 1



level, be regarded as consequences of `symmetries' of space and time.

Thus the law of conservation of linear momentum follows from the

homogeneity of space, the law of conservation of angular momentum

from the isotropy of space; it does not matter where we place the origin

of our coordinate axes, or in which direction they are oriented.

These conservation laws are as signi®cant in nuclear physics as else-

where, but there is another symmetry and conservation law which is of

particular importance in quantum systems such as the nucleus: re¯ection

symmetry and parity. By re¯ection symmetry we mean re¯ection about

the origin, r ! r0 � ÿr. A single-particle wave-function ÿ�r� is said to

have parity �1 if it is even under re¯ection, i.e.

ÿ�ÿr� � ÿ�r�;

and parity ÿ1 if it is odd under re¯ection, i.e.

ÿ�ÿr� � ÿÿ�r�:

More generally, a many-particle wave-function has parity �1 if it is even

under re¯ection of all the particle coordinates, and parity ÿ1 if it is odd

under re¯ection.

Parity is an important concept because the laws of the electromag-

netic and of the strong interaction are of exactly the same form if written

with respect to a re¯ected left-handed coordinate system �0x0; 0y0; 0z0� as
they are in the standard right-handed system �0x; 0y; 0z� (Fig. 1.1). We

shall see in Chapter 2 that this is not true of the weak interaction.

Nevertheless, for many properties of atomic and nuclear systems the

weak interaction is unimportant and wave-functions for such systems

can be chosen to have a de®nite parity which does not change as the

wave-function evolves in time according to SchroÈ dinger's equation.

1.4 Units

Every branch of physics tends to ®nd certain units particularly congenial.

In nuclear physics, the size of the nucleus makes 10ÿ15 m � 1 fm (femto-

metre) convenient as a unit of length, usually called a fermi. However,

nuclear cross-sections, which have the dimensions of area, are measured

in barns; 1 b � 10ÿ28 m2 � 100 fm2. Energies of interest are usually of the

order of MeV. Since mc2 has the dimensions of energy, it is convenient to

quote masses in units of MeV/c2.

4 Prologue



For order-of-magnitude calculations, the masses me and mp of the

electron and proton may be taken as

me � 0:5 MeV=c2

mp � 938 MeV=c2

and it is useful to remember that

»c � 197 MeV fm; e2=4�"0 � 1:44 MeV fm;

e2=4�"0 »c � 1=137; c � 3� 1023 fm sÿ1:

The student will perhaps be surprised to ®nd how easily many expressions

in nuclear physics can be evaluated using these quantities.

Problems

1.1 Show that the ratio of the gravitational potential energy to the Coulomb

potential energy between two electrons is � 2:4� 10ÿ43.

1.2(a) Show that in polar coordinates �r; �; �� the re¯ection

r ! r0 � ÿr is equivalent to r ! r0 � r

� ! � 0 � �ÿ �; � ! �0 � �� �.

Problems 5

Fig. 1.1 The point P at r with coordinates �x; y; z� has coordinates �ÿx;ÿy;ÿz�
in the primed, re¯ected coordinate axes. �0x0; 0y0; 0z0� make up a left-handed set of

axes. In the ®gure, the 0z axis is out of the plane of the page.



(b) What are the parities of the following electron states of the hydrogen

atom:

(i) ÿ100 �
1���
�

p 1

a0

� �3
2

eÿr=a0 ,

(ii) ÿ210 �
1

4
����������2��p 1

a0

� �3
2 r

a0
eÿr=2a0 cos �,

(iii) ÿ21ÿ1 �
1

8
���
�

p 1

a0

� �3
2 r

a0
eÿr=2a0 sin � eÿi�?

(a0 � �4�"0� »2=mee
2 is the Bohr radius.)

1.3(a) Show that the wavelength of a photon of energy 1 MeV is � 1240 fm.

(b) The electrostatic self-energy of a uniformly charged sphere of total

charge e, radius R, is U � �3=5�e2=�4�"0R�. Show that if R � 1 fm,

U � 0:86 MeV.
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