Theory of Solidification

The processes of freezing and melting were present at the beginnings of the Earth and continue to affect the natural and industrial worlds. The solidification of a liquid or the melting of a solid involves a complex interplay of many physical effects. This book systematically presents the field of continuum solidification theory based on instability phenomena. An understanding of the physics is developed by using examples of increasing complexity with the object of creating a deep physical insight applicable to more complex problems.

Applied mathematicians, engineers, physicists and materials scientists will all find this volume of interest.

Stephen H. Davis is McCormick Professor and Walter P. Murphy Professor of Applied Mathematics at Northwestern University.
THEORY OF SOLIDIFICATION

STEPHEN H. DAVIS
Northwestern University

Cambridge University Press
0521650801 - Theory of Solidification
Stephen H. Davis
Frontmatter
More information
I dedicate this book to the wonderful women in my life,
my mother Eva
and
my wife Suellen
# Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Pure Substances</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Planar interfaces</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Mathematical model</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2</td>
<td>One-dimensional freezing from a cold boundary</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3</td>
<td>One-dimensional freezing from a cold boundary: Small undercooling</td>
<td>13</td>
</tr>
<tr>
<td>2.1.4</td>
<td>One-dimensional freezing into an undercooled melt</td>
<td>15</td>
</tr>
<tr>
<td>2.1.5</td>
<td>One-dimensional freezing into an undercooled melt: Effect of kinetic undercooling</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Curved interfaces</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Boundary conditions</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Growth of a nucleus in an undercooled melt</td>
<td>26</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Linearized instability of growing nucleus</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Linearized instability of a plane front growing into an undercooled melt</td>
<td>35</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Remarks</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>Binary Substances</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Mathematical model</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Directional solidification</td>
<td>45</td>
</tr>
</tbody>
</table>
Contents

3.3 Basic state and approximate models 46
3.4 Linearized instability of a moving front in directional solidification 48
3.5 Mechanism of morphological instability 56
3.6 More general models 57
3.7 Remarks 59

4 Nonlinear theory for directional solidification 62
4.1 Bifurcation theory 62
4.1.1 Two-dimensional theory 62
4.1.2 Two-dimensional theory for wave number selection 66
4.1.3 Three-dimensional theory 72
4.2 Long-scale theories 76
4.2.1 Small segregation coefficient 77
4.2.2 Small segregation coefficient and large surface energy 78
4.2.3 Near absolute stability 80
4.3 Remarks 82

5 Anisotropy 86
5.1 Surface energy and kinetics 86
5.2 Directional solidification with “small” anisotropy 91
5.3 Directional solidification with “small” anisotropy: Stepwise growth 97
5.4 Unconstrained growth with “small” anisotropy 105
5.4.1 Two-dimensional crystal and one-dimensional front 110
5.4.2 Three-dimensional crystal and two-dimensional front 111
5.5 Unconstrained growth with “large” anisotropy – One-dimensional interfaces 121
5.6 Unconstrained growth with “large” anisotropy – Two-dimensional interfaces 135
5.7 Faceting with constant driving force 139
5.8 Coarsening 152
5.9 Remarks 156

6 Disequilibrium 162
6.1 Model of rapid solidification 164
6.2 Basic state and linear stability theory 167
## Contents

6.3 Thermal effects 171  
6.4 Linear-stability theory with thermal effects 172  
6.4.1 Steady mode 173  
6.4.2 Oscillatory mode 173  
6.4.3 The two modes 177  
6.5 Cellular modes in the FTA: Two-dimensional bifurcation theory 181  
6.6 Oscillatory modes in the FTA: Two-dimensional bifurcation theory 183  
6.7 Strongly nonlinear pulsations 189  
6.7.1 Small $\beta$ 190  
6.7.2 Large $\beta$ 198  
6.7.3 Numerical simulation 203  
6.8 Mode coupling 204  
6.8.1 Pulsatile–cellular interactions 204  
6.8.2 Oscillatory–cellular interactions 205  
6.8.3 Oscillatory–pulsatile interactions 206  
6.9 Phenomenological models 208  
6.10 Remarks 211  

7 Dendrites 215  
7.1 Isolated needle crystals 217  
7.2 Approximate selection arguments 221  
7.3 Selection theories 229  
7.4 Arrays of needles 237  
7.5 Remarks 251  

8 Eutectics 255  
8.1 Formulation 256  
8.2 Approximate theories for steady growth and selection 261  
8.3 Instabilities 267  
8.4 Remarks 270  

9 Microscale Fluid Flow 274  
9.1 Formulation 276  
9.2 Prototype flows 279  
9.2.1 Free convection 279  
9.2.2 Bénard convection 280  
9.3 Directional solidification and volume-change convection 283
Contents

9.4 Directional solidification and buoyancy-driven convection 287
9.5 Directional solidification and forced flows 292
9.6 Directional solidification with imposed cellular convection 304
9.7 Flows over Ivantsov needles 311
9.8 Remarks 319

10 Mesoscale Fluid Flow 324
10.1 Formulation 325
10.2 Planar solidification between horizontal planes 326
10.3 Mushy-zone models 331
10.4 Mushy zones with volume-change convection 336
10.5 Mushy zones with buoyancy-driven convective instability 341
10.6 An oscillatory mode of convective instability 349
10.7 Weakly nonlinear convection 356
10.8 Chimneys 357
10.9 Remarks 363

11 Phase-Field Models 366
11.1 Pure materials – A model system 367
11.2 Pure materials – A deduced system 372
11.3 Pure materials – Computations 374
11.4 Remarks 376

Index 379
Preface

Materials Science is an extremely broad field covering metals, semiconductors, ceramics, and polymers, just to mention a few. Its study is dominated by the fabrication of specimens and the characterization of their properties. A relatively small portion of the field is devoted to phase transformation, the dynamic process by which in the present context a liquid is frozen or a solid is melted.

This book is devoted to the study of liquid (melt)-solid transformations of atomically rough materials: metals or semiconductors, including model organics like plastic crystals. The emphasis is on the use of instability behavior as a means of understanding those processes that ultimately determine the microstructure of a crystalline solid. The fundamental building block of this study is the Mullins–Sekerka instability of a front, which gives conditions for the growth of infinitesimal disturbances of a solid–liquid front. This is generalized in many ways: into the nonlinear regime, including thermodynamic disequilibrium, anisotropic material properties, and effects of convection in the liquid. Cellular, eutectic, and dendritic behaviors are discussed. The emphasis is on dynamic phenomena rather than equilibria. In a sense then, it concerns “physiology” rather than “anatomy.”

The aim of this book is to present in a systematic way the field of continuum solidification theory. This begins with the primitive field equations for diffusion and the derivation of appropriate jump conditions on the interface between the solid and liquid. It then uses such models to explore morphological instabilities in the linearized range and gives physical explanations for the phenomena uncovered. To this point the discussion is elementary in terms of mathematical sophistication. It then enters into the nonlinear theories of morphological change with the use of bifurcation theory for wave number and pattern selection, long-wave theories in the strongly nonlinear range, and numerical simulation. The reader is assumed to be reasonably sophisticated in the mathematical methods,
that is, stability theory and its nonlinear extensions and some asymptotic and perturbation theory, but having little background in materials science. Thus, the book is deliberately nonuniform in its “degree of difficulty.” Those with limited mathematical background can skip the nonlinear theories and read about the physical phenomena and the linearized theories in the various chapters. The text should take the reader from the elements of the physics to the latest developments of the theory. It would be hoped that applied mathematicians, engineers, and physicists would profit from the material presented as would theoretically inclined materials scientists who could see how mathematics can generate understanding of relevant physical phenomena. An understanding of the physics is developed by using examples of increasing complexity with the objective of creating a deep physical insight applicable to more complex problems.

My interest in solidification was first stimulated by Jon Dantzig in his Ph.D. thesis of 1977 and permanently triggered by Ulrich Müller in our 1984 work on Bénard convection coupled to a freezing front. When learning a new subject as an “adult,” one leans heavily on the expertise of senior colleagues for their wisdom. I thus wish to publicly thank Sam Coriell, Jon Dantzig, Paul Fife, Marty Glicksman, Wilfried Kurz, Jeff McFadden, Uli Müller, Bob Sekerka, Peter Voorhees, and Grae Worster for their contributions to my education.

I have always learned more from my graduate students, post-doctoral fellows, and visiting scientists than they have from me. I wish to thank them for their willingness to try something new. They are V. S. Ajaev, K. Brattkus, R. J. Braun, L. Bühler, D. J. Canright, Y.-J. Chen, J. A. Dantzig, A. A. Golovin, H.-P. Grimm, D. A. Huntley, P.-Q. Luo, G. B. McFadden, G. J. Merchant, P. Metzener, U. Müller, D. S. Riley, T. P. Schulze, B. J. Spencer, A. Umantsev, G. W. Young, and J.-J. Xu.

I am grateful to several people for reading selected chapters of the book and making important suggestions. They are Dan Anderson, Kirk Brattkus, Yi-Ju Chen, Jon Dantzig, Sasha Golovin, Jeff McFadden, Tim Schulze, Peter Voorhees, Grae Worster, and J.-J. Xu.

This book could not have been written without the generous support of the National Aeronautics and Space Administration Microgravity Sciences and Applications Program.

Finally, I would like to thank my secretary, Judy Piehl, not only for her impeccable typing, but for her sense of joy in her work. Her presence in the department makes it possible for all of us to do better what we do.