Computational Models for Turbulent Reacting Flows

This book presents the current state of the art in computational models for turbulent reacting flows, and analyzes carefully the strengths and weaknesses of the various techniques described. The focus is on formulation of practical models as opposed to numerical issues arising from their solution.

A theoretical framework based on the one-point, one-time joint probability density function (PDF) is developed. It is shown that all commonly employed models for turbulent reacting flows can be formulated in terms of the joint PDF of the chemical species and enthalpy. Models based on direct closures for the chemical source term as well as transported PDF methods, are covered in detail. An introduction to the theory of turbulence and turbulent scalar transport is provided for completeness.

The book is aimed at chemical, mechanical, and aerospace engineers in academia and industry, as well as developers of computational fluid dynamics codes for reacting flows.

RODNEY O. FOX received his Ph.D. from Kansas State University, and is currently the Herbert L. Stiles Professor in the Chemical Engineering Department at Iowa State University. He has held visiting positions at Stanford University and at the CNRS Laboratory in Rouen, France, and has been an invited professor at ENSIC in Nancy, France; Politecnico di Torino, Italy; and Aalborg University, Denmark. He is the recipient of a National Science Foundation Presidential Young Investigator Award, and has published over 70 scientific papers.

CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor:

Arvind Varma, University of Notre Dame

Editorial Board:

Alexis T. Bell, University of California, Berkeley John Bridgwater, University of Cambridge L. Gary Leal, University of California, Santa Barbara Massimo Morbidelli, ETH, Zurich Stanley I. Sandler, University of Delaware Michael L. Schuler, Cornell University Arthur W. Westerberg, Carnegie-Mellon University

Titles in the Series:

Diffusion: Mass Transfer in Fluid Systems, Second Editon, E. L. Cussler

Principles of Gas-Solid Flows, Liang-Shih Fan and Chao Zhu

Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules, Hasan Orbey and Stanley I. Sandler

Advanced Transport Phenomena, John C. Slattery

Parametric Sensitivity in Chemical Systems, Arvind Varma, Massimo Morbidelli and Hua Wu

Chemical Engineering Design and Analysis, T. Michael Duncan and Jeffrey A. Reimer

- Chemical Product Design, E. L. Cussler and G. D. Moggridge
- Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes, Massimo Morbidelli, Asterios Gavriilidis and Arvind Varma

Process Control: A First Course with MATLAB, Pao C. Chau

Computational Models for Turbulent Reacting Flows, Rodney O. Fox

Cambridge University Press 0521650496 - Computational Models for Turbulent Reacting Flows Rodney O. Fox Frontmatter <u>More information</u>

Computational Models for Turbulent Reacting Flows

Rodney O. Fox

Herbert L. Stiles Professor of Chemical Engineering Iowa State University

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typefaces Times 10/14 pt. and Gill Sans System $\operatorname{ETEX} 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Fox, Rodney O., 1959–
Computational models for turbulent reacting flows / Rodney O. Fox.
p. cm. – (Cambridge series in chemical engineering)
Includes bibliographical references and index.
ISBN 0 521 65049 6 – ISBN 0 521 65907 8 (paperback)
1. Turbulence – Mathematical models. 2. Combustion – Mathematical models. 3. Fluid dynamics – Mathematical models. I. Title. II. Series.
QA913.F677 2003
660'.284–dc21 2003048570

ISBN 0 521 65049 6 hardback ISBN 0 521 65907 8 paperback à Roberte

Contents

Preface			
I	Turb	oulent reacting flows	1
	1.1	Introduction	1
	1.2	Chemical-reaction-engineering approach	3
		1.2.1 PFR and CSTR models	5
		1.2.2 RTD theory	8
		1.2.3 Zone models	10
		1.2.4 Micromixing time	12
	13	Fluid-mechanical approach	15
	1.5	1.3.1 Fundamental transport equations	15
		1.3.2 Turbulence models	17
		1.3.3 Chemical source term	18
		1.3.4 Molecular mixing	23
	1.4	Relationship between approaches	24
	١.5	A road map to Chapters 2–7	25
2	Statistical description of turbulent flow		27
	2.1	Homogeneous turbulence	27
		2.1.1 One-point probability density function	29
		2.1.2 Spatial correlation functions	32
		2.1.3 Iemporal correlation functions	34
		2.1.4 Turbulent energy spectrum	30 20
		2.1.5 Though velocity specificitin 2.1.6 Spectral transport	59 41
			11

viii Contents

	2.2	Inhomogeneous turbulence	44
		2.2.1 Expected values of derivatives	45
		2.2.2 Mean velocity	47
		2.2.3 Reynolds stresses	48
		2.2.4 Turbulent dissipation rate	51
3	Stati	stical description of turbulent mixing	56
	3.1	Phenomenology of turbulent mixing	56
		3.1.1 Length scales of turbulent mixing	57
		3.1.2 Phenomenological model for turbulent mixing	58
	3.2	Homogeneous turbulent mixing	62
		3.2.1 One-point velocity, composition PDF	62
		3.2.2 Conditional velocity and scalar statistics	67
		3.2.3 Spatial correlation functions	69
		3.2.4 Scalar energy spectrum	71
		3.2.5 Model scalar spectrum	73
		3.2.6 Scalar spectral transport	78
	3.3	Inhomogeneous turbulent mixing	80
		3.3.1 Scalar mean	81
		3.3.2 Scalar flux	82
		3.3.3 Scalar variance	84
		3.3.4 Scalar dissipation rate	86
		3.3.5 Scalar covariance	90
		3.3.6 Joint scalar dissipation rate	92
	3.4	Differential diffusion	96
		3.4.1 Homogeneous turbulence	97
		3.4.2 Mean scalar gradients	98
		3.4.3 Decaying scalars	98
4	Models for turbulent transport		
	4. I	Direct numerical simulation	100
		4.1.1 Homogeneous turbulence	101
		4.1.2 Reacting flow	102
	4.2	Large-eddy simulation	104
		4.2.1 Filtered Navier-Stokes equation	104
		4.2.2 LES velocity PDF	106
		4.2.3 Scalar transport	108
		4.2.4 Reacting flow	109
	4.3	Linear-eddy model	110
		4.3.1 Homogeneous flows	111
		4.3.2 Inhomogeneous flows	113

ix Contents

	4.4	RANS turbulence models	114
		4.4.1 Turbulent-viscosity-based models	114
		4.4.2 Reynolds-stress transport equation	117
	4.5	RANS models for scalar mixing	120
		4.5.1 Turbulent-diffusivity-based models	121
		4.5.2 Scalar-flux transport equation	123
		4.5.3 Scalar-variance transport equation	125
		4.5.4 Scalar-dissipation transport equation	126
	4.6	Non-equilibrium models for scalar dissipation	127
		4.6.1 Spectral relaxation model	128
		4.6.2 Spectral transfer rates	132
		4.6.3 Extensions of the SR model	135
	4.7	Models for differential diffusion	135
		4.7.1 Multi-variate SR model	135
		4.7.2 Mean scalar gradients	137
		4.7.3 Decaying scalars	138
	4.8	Transported PDF methods	140
5	Clos	sures for the chemical source term	141
	5.I	Overview of the closure problem	141
		5.1.1 Chemical source term	142
		5.1.2 Elementary reactions	144
		5.1.3 Non-elementary reactions	146
		5.1.4 Reynolds-averaged chemical source term	150
		5.1.5 Chemical time scales	151
	5.2	Moment closures	153
		5.2.1 First-order moment closures	153
		5.2.2 Higher-order moment closures	155
	5.3	Mixture-fraction vector	156
		5.3.1 General formulation	157
		5.3.2 Definition of mixture fraction	161
		5.3.3 Example flows	168
		5.3.4 Mixture-fraction PDF	174
	5.4	Equilibrium-chemistry limit	177
		5.4.1 Treatment of reacting scalars	177
		5.4.2 Application to turbulent reacting flows	178
	5.5	Simple chemistry	180
		5.5.1 General formulation: reaction-progress variables	181
		5.5.2 One-step reaction	182
		5.5.3 Competitive-consecutive reactions	184
		554 Parallel reactions	189

X Contents

	5.6	Lagrar	ngian micromixing models	193
		5.6.1	IEM model for a stirred reactor	194
		5.6.2	Age-based models	195
		5.6.3	Lagrangian models for the micromixing rate	197
		5.6.4	Mechanistic models	198
		5.6.5	Extension to inhomogeneous flows	200
	5.7	Lamin	ar diffusion flamelets	201
		5.7.I	Definition of a flamelet	201
		5.7.2	Stationary laminar flamelet model	204
		5.7.3	Joint mixture fraction, dissipation rate PDF	205
		5.7.4	Extension to inhomogeneous flows	206
	5.8	Condi	tional-moment closures	207
		5.8.I	General formulation: conditional moments	207
		5.8.2	Closures based on presumed conditional moments	209
		5.8.3	Conditional scalar mean: homogeneous flow	211
		5.8.4	Conditional scalar dissipation rate	212
		5.8.5	Extension to inhomogeneous flows	214
	5.9	Presur	med PDF methods	216
		5.9.1	Single reaction-progress variable	216
		5.9.2	Multiple reaction-progress variables	218
	5.10	Multi-	environment presumed PDF models	221
		5.10.1	General formulation	222
		5.10.2	Extension to inhomogeneous flows	226
		5.10.3	Multi-environment conditional PDF models	233
		5.10.4	Extension to LES	237
	5.11	Transp	ported PDF methods	239
6	PDF 1	nethod	ls for turbulent reacting flows	241
	6.1	Introd	luction	241
		6.1.1	Velocity, composition PDF	242
		6.1.2	Composition PDF	244
	6.2	Velocity, composition PDF transport equation		244
		6.2.I	Mean convected derivative: first form	245
		6.2.2	Mean convected derivative: second form	246
		6.2.3	Joint PDF transport equation: final form	248
		6.2.4	Conditional fluxes: the unclosed terms	248
	6.3	Comp	position PDF transport equation	249
		6.3.1	Derivation of transport equation	249
		6.3.2	Scalar-conditioned velocity fluctuations	251
		(2 2	Delette estate de l'estate de setementation de la setementation	251

xi Contents

6.4	Relationship to RANS transport equations			
	6.4.1	RANS mean velocity transport equation	252	
	6.4.2	Reynolds-stress transport equation	254	
6.5	Mode	ls for conditional acceleration	254	
	6.5.I	Velocity PDF: decoupling from the scalar field	255	
	6.5.2	Velocity PDF closures	255	
	6.5.3	Corresponding Reynolds-stress models	256	
	6.5.4	Generalized Langevin model	257	
	6.5.5	Extension to velocity, composition PDF	258	
	6.5.6	Coupling with mean pressure field	259	
	6.5.7	Wall boundary conditions for velocity PDF	260	
	6.5.8	Large-eddy PDF methods	260	
	6.5.9	Velocity, wavenumber PDF models	261	
6.6	Mode	ls for conditional diffusion	261	
	6.6.1	Some useful constraints	262	
	6.6.2	Desirable properties for mixing models	263	
	6.6.3	Physical basis for desirable properties	264	
	6.6.4	Three simple mixing models	273	
	6.6.5	Prospects for mixing model improvements	286	
6.7	Lagrar	ngian PDF methods	287	
	6.7.1	Lagrangian notional particles	287	
	6.7.2	Lagrangian fluid particles	289	
	6.7.3	Spatial distribution of notional particles	290	
	6.7.4	Relationship to Eulerian PDF transport equation	290	
	6.7.5	Stochastic differential equations for notional particles	292	
	6./.6	Lagrangian velocity PDF closures	294	
	6././	Lagrangian mixing models	296	
6.8	Partic	le-field estimation	298	
	6.8.1	Notional particles	298	
	6.8.2	Empirical PDF	300	
	6.8.3	Errors in mean-field estimate	302	
	6.8.4	PDF estimation	307	
6.9	Chem	ical source term	308	
	6.9.1	Stiff kinetics	308	
	6.9.2	Decoupling from transport terms	309	
	6.9.3	Pre-computed lookup tables	310	
	6.7.4	In situ adaptive tabulation	312	
6.10	Highe	r-order PDF models	321	
	6.10.1	Turbulence frequency	321	
	6.10.2	Lagrangian SR model	322	

xii Contents

	6.10.3 LSR model with differential diffusion	325
	6.10.4 LSR model with reacting scalars	326
7 Tran	sported PDF simulations	328
7.1	Overview of simulation codes	329
7.2	Eulerian composition PDF codes	331
	7.2.1 Particle transport processes	332
	7.2.2 Numerical diffusion	336
	7.2.3 Other considerations	337
7.3	Lagrangian composition PDF codes	340
	7.3.1 Notional-particle representation	340
	7.3.2 Monte-Carlo simulation	344
	7.3.3 Boundary conditions	346
	7.3.4 Particle-field estimation	348
7.4		552
7.4	Velocity, composition PDF codes	354
	7.4.1 Media conservation equations	333 356
	7.4.2 Monte-Carlo simulation	350
	744 Particle-field estimation and consistency	358
	7.4.5 Other considerations	359
7.5	Concluding remarks	361
Appendi	x A Derivation of the SR model	363
A.I	Scalar spectral transport equation	363
A.2	Spectral relaxation model	365
A.3	Scalar dissipation rate	368
Appendi	x B Direct quadrature method of moments	372
B.I	Quadrature method of moments	372
B.2	Direct QMOM	373
	B.2.1 Uni-variate case	374
	B.2.2 Bi-variate case	379
	B.2.3 Multi-variate case	382
B.3	DQMOM–IEM model	384
Reference	25	387
Index		

Preface

In setting out to write this book, my main objective was to provide a reasonably complete introduction to computational models for turbulent reacting flows for students, researchers, and industrial end-users new to the field. The focus of the book is thus on the *formulation* of models as opposed to the numerical issues arising from their solution. Models for turbulent reacting flows are now widely used in the context of computational fluid dynamics (CFD) for simulating chemical transport processes in many industries. However, although CFD codes for non-reacting flows and for flows where the chemistry is relatively insensitive to the fluid dynamics are now widely available, their extension to reacting flows is less well developed (at least in commercial CFD codes), and certainly less well understood by potential end-users. There is thus a need for an introductory text that covers all of the most widely used reacting flow models, and which attempts to compare their relative advantages and disadvantages for particular applications.

The primary intended audience of this book comprises graduate-level engineering students and CFD practitioners in industry. It is assumed that the reader is familiar with basic concepts from chemical-reaction-engineering (CRE) and transport phenomena. Some previous exposure to theory of turbulent flows would also be very helpful, but is not absolutely required to understand the concepts presented. Nevertheless, readers who are unfamiliar with turbulent flows are encouraged to review Part I of the recent text *Turbulent Flows* by Pope (2000) before attempting to tackle the material in this book. In order to facilitate this effort, I have used the same notation as Pope (2000) whenever possible. The principal differences in notation occur in the treatment of multiple reacting scalars. In general, vector/matrix notation is used to denote the collection of thermodynamic variables (e.g., concentrations, temperature) needed to describe a reacting flow. Some familiarity with basic linear algebra and elementary matrix operations is assumed.

The choice of models to include in this book was dictated mainly by their ability to treat the wide range of turbulent reacting flows that occur in technological applications of interest to chemical engineers. In particular, models that cannot treat 'general' chemical XIV Preface

kinetics have been excluded. For example, I do not discuss models developed for premixed turbulent combustion based on the 'turbulent burning velocity' or on the 'level-set' approach. This choice stems from my desire to extend the CRE approach for modeling reacting flows to be compatible with CFD codes. In this approach, the exact treatment of the chemical kinetics is the *sine qua non* of a good model. Thus, although most of the models discussed in this work can be used to treat non-premixed turbulent combustion, this will not be our primary focus. Indeed, in order to keep the formulation as simple as possible, all models are presented in the context of constant-density flows. In most cases, the extension to variable-density flows is straightforward, and can be easily undertaken after the reader has mastered the application of a particular model to constant-density cases.

In order to compare various reacting-flow models, it is necessary to present them all in the same conceptual framework. In this book, a statistical approach based on the onepoint, one-time joint probability density function (PDF) has been chosen as the common theoretical framework. A similar approach can be taken to describe turbulent flows (Pope 2000). This choice was made due to the fact that nearly all CFD models currently in use for turbulent reacting flows can be expressed in terms of quantities derived from a joint PDF (e.g., low-order moments, conditional moments, conditional PDF, etc.). Ample introductory material on PDF methods is provided for readers unfamiliar with the subject area. Additional discussion on the application of PDF methods in turbulence can be found in Pope (2000). Some previous exposure to engineering statistics or elementary probability theory should suffice for understanding most of the material presented in this book.

The material presented in this book is divided into seven chapters and two appendices. Chapter 1 provides background information on turbulent reacting flows and on the two classical modeling approaches (chemical-reaction-engineering and fluid-mechanical) used to describe them. The chapter ends by pointing out the similarity between the two approaches when dealing with the effect of molecular mixing on chemical reactions, especially when formulated in a Lagrangian framework.

Chapter 2 reviews the statistical theory of turbulent flows. The emphasis, however, is on collecting in one place all of the necessary concepts and formulae needed in subsequent chapters. The discussion of these concepts is necessarily brief, and the reader is referred to Pope (2000) for further details. It is, nonetheless, essential that the reader become familiar with the basic scaling arguments and length/time scales needed to describe high-Reynolds-number turbulent flows. Likewise, the transport equations for important one-point statistics in inhomogeneous turbulent flows are derived in Chapter 2 for future reference.

Chapter 3 reviews the statistical description of scalar mixing in turbulent flows. The emphasis is again on collecting together the relevant length and time scales needed to describe turbulent transport at high Reynolds/Schmidt numbers. Following Pope (2000), a model scalar energy spectrum is constructed for stationary, isotropic scalar fields. Finally, the transport equations for important one-point scalar statistics in inhomogeneous turbulent mixing are derived in Chapter 3.

XV Preface

In order to model turbulent reacting flows accurately, an accurate model for turbulent transport is required. In Chapter 4 I provide a short introduction to selected computational models for *non-reacting* turbulent flows. Here again, the goal is to familiarize the reader with the various options, and to collect the most important models in one place for future reference. For an in-depth discussion of the physical basis of the models, the reader is referred to Pope (2000). Likewise, practical advice on choosing a particular turbulence model can be found in Wilcox (1993).

With regards to reacting flows, the essential material is presented in Chapters 5 and 6. Chapter 5 focuses on reacting flow models that can be expressed in terms of Eulerian (as opposed to Lagrangian) transport equations. Such equations can be solved numerically using standard finite-volume techniques, and thus can be easily added to existing CFD codes for turbulent flows. Chapter 6, on the other hand, focuses on *transported PDF* or *full PDF* methods. These methods typically employ a Lagrangian modeling perspective and 'non-traditional' CFD methods (i.e., Monte-Carlo simulations). Because most readers will not be familiar with the numerical methods needed to solve transported PDF models, an introduction to the subject is provided in Chapter 7.

Chapter 5 begins with an overview of chemical kinetics and the chemical-source-term closure problem in turbulent reacting flows. Based on my experience, closure methods based on the moments of the scalars are of very limited applicability. Thus, the emphasis in Chapter 5 is on presumed PDF methods and related closures based on conditioning on the mixture fraction. The latter is a non-reacting scalar that describes mixing between non-premixed inlet streams. A general definition of the mixture-fraction vector is derived in Chapter 5. Likewise, it is shown that by using a so-called 'mixture-fraction' transformation it is possible to describe a turbulent reacting flow by a reduced set of scalars involving the mixture-fraction vector and a 'reaction-progress' vector. Assuming that the mixture-fraction PDF is known, we introduce closures for the reaction-progress vector based on chemical equilibrium, 'simple' chemistry, laminar diffusion flamelets, and conditional moment closures. Closures based on presuming a form for the PDF of the reacting scalars are also considered in Chapter 5.

Chapter 6 presents a relatively complete introduction to transported PDF methods for turbulent reacting flow. For these flows, the principal attraction of transported PDF methods is the fact that the highly non-linear chemical source term is treated without closure. Instead, the modeling challenges are shifted to the molecular mixing model, which describes the combined effects of turbulent mixing (i.e., the scalar length-scale distribution) and molecular diffusion on the joint scalar PDF. Because the transported PDF treatment of turbulence is extensively discussed in Pope (2000), I focus in Chapter 6 on modeling issues associated with molecular mixing. The remaining sections in Chapter 6 deal with Lagrangian PDF methods, issues related to estimation of statistics based on 'particle' samples, and with tabulation methods for efficiently evaluating the chemical source term.

Chapter 7 deviates from the rest of the book in that it describes computational *methods* for 'solving' the transported PDF transport equation. Although Lagrangian PDF codes are

XVi Preface

generally preferable to Eulerian PDF codes, I introduce both methods and describe their relative advantages and disadvantages. Because transported PDF codes are less developed than standard CFD methods, readers wishing to utilize these methods should consult the literature for recent advances.

The material covered in the appendices is provided as a supplement for readers interested in more detail than could be provided in the main text. Appendix A discusses the derivation of the spectral relaxation (SR) model starting from the scalar spectral transport equation. The SR model is introduced in Chapter 4 as a non-equilibrium model for the scalar dissipation rate. The material in Appendix A is an attempt to connect the model to a more fundamental description based on two-point spectral transport. This connection can be exploited to extract model parameters from direct-numerical simulation data of homogeneous turbulent scalar mixing (Fox and Yeung 1999).

Appendix B discusses a new method (DQMOM) for solving the Eulerian transported PDF transport equation without resorting to Monte-Carlo simulations. This offers the advantage of solving for the joint composition PDF introduced in Chapter 6 using standard finite-volume CFD codes, without resorting to the chemical-source-term closures presented in Chapter 5. Preliminary results found using DQMOM are quite encouraging, but further research will be needed to understand fully the range of applicability of the method.

I am extremely grateful to the many teachers, colleagues and graduate students who have helped me understand and develop the material presented in this work. In particular, I would like to thank Prof. John C. Matthews of Kansas State University who, through his rigorous teaching style, attention to detail, and passion for the subject of transport phenomena, first planted the seed in the author that has subsequently grown into the book that you have before you. I would also like to thank my own students in the graduate courses that I have offered on this subject who have provided valuable feedback about the text. I want especially to thank Kuochen Tsai and P. K. Yeung, with whom I have enjoyed close collaborations over the past several years, and Jim Hill at Iowa State for his encouragement to undertake the writing of this book. I would also like to acknowledge the important contributions of Daniele Marchisio in the development of the DQMOM method described in Appendix B.

For his early support and encouragement to develop CFD models for chemical-reactionengineering applications, I am deeply indebted to my post-doctoral advisor, Jacques Villermaux. His untimely death in 1997 was a great loss to his friends and family, as well as to the profession.

I am also deeply indebted to Stephen Pope in many different ways, starting from his early encouragement in 1991 to consider PDF methods as a natural modeling framework for describing micromixing in chemical reactors. However, I am particularly grateful that his text on turbulent flows appeared before this work (relieving me of the arduous task of covering this subject in detail!), and for his generosity in sharing early versions of his text, as well as his LATEX macro files and precious advice on preparing the manuscript.

XVII Preface

Beginning with a Graduate Fellowship, my research in turbulent reacting flows has been almost continuously funded by research grants from the US National Science Foundation. This long-term support has made it possible for me to pursue novel research ideas outside the traditional modeling approach used by chemical reaction engineers. In hindsight, the application of CFD to chemical reactor design and analysis appears to be a rather natural idea. Indeed, all major chemical producers now use CFD tools routinely to solve day-today engineering problems. However, as recently as the 1990s the gap between chemical reaction engineering and fluid mechanics was large, and only through a sustained effort to understand both fields in great detail was it possible to bridge this gap. While much research remains to be done to develop a complete set of CFD tools for chemical reaction engineering (most notably in the area of *multiphase* turbulent reacting flows), one is certainly justified in pointing to computational models for turbulent reacting flows as a highly successful example of fundamental academic research that has led to technological advances in real-world applications. Financial assistance provided by my industrial collaborators: Air Products, BASF, BASELL, Dow Chemical, DuPont, and Fluent, is deeply appreciated.

I also want to apologize to my colleagues in advance for not mentioning many of their excellent contributions to the field of turbulent reacting flows that have appeared over the last 50 years. It was my original intention to include a section in Chapter 1 on the history of turbulent-reacting-flow research. However, after collecting the enormous number of articles that have appeared in the literature to date, I soon realized that the task would require more time and space than I had at my disposal in order to do it justice. Nonetheless, thanks to the efforts of Jim Herriott at Iowa State, I have managed to include an extensive Reference section that will hopefully serve as a useful starting point for readers wishing to delve into the history of particular subjects in greater detail.

Finally, I dedicate this book to my wife, Roberte. Her encouragement and constant support during the long period of this project and over the years have been invaluable.