

Contents

General preface to the series			
Pref	ace to	the sixth edition	xiii
1	Impo	rtance and role of photosynthesis	1
	1.1	Ultimate energy source	1
	1.2	The carbon dioxide cycle	2
	1.3	Efficiency and turnover	4
	1.4	Spectra	5
	1.5	Quantum theory	6
	1.6	Energy units	7
	1.7	Measurement of photosynthetic irradiance	8
	1.8	Some techniques used in photosynthesis research	10
2	Histo	ry and progress of ideas	22
	2.1	Early discoveries	22
	2.2	Limiting factors	24
	2.3	Light and dark reactions; flashing light experiments	26
	2.4	Further discoveries and formulations	27
3	Photo	synthetic apparatus	32
	3.1	Isolation of chloroplasts from leaves	37
		Chloroplast pigments	40
		The photosynthetic unit	47
	3.4	Photosynthetic apparatus of C ₄ plants	54

viii Contents

4	Light	absorption and the two photosystems	58
	4.1	Dissipation of absorbed light energy: photochemistry,	
		fluorescence, phosphorescence and	
		thermoluminescence	59
	4.2	Energy transfer or sensitized fluorescence	64
	4.3	Action spectra, quantum yield	66
	4.4	Emerson effect and the two light reactions	67
	4.5	Reaction centres and primary electron acceptors	72
	4.6	Experimental separation of the two photosystems	73
	4.7	Inside-out and right-side-out chloroplast vesicles	75
	4.8	Photosynthetic oxygen evolution	75
5	Photo	synthetic electron transport and phosphorylation	79
	5.1	Reduction and oxidation of electron carriers	80
	5.2	Two types of photosynthetic phosphorylation	80
		Non-cyclic electron transport and phosphorylation	81
	5.4	ATP synthesis in chloroplasts: the chemiosmotic	
		hypothesis	86
		Cyclic electron transport and phosphorylation	91
		Structure-function relationships	95
	5.7	Artificial electron donors, electron acceptors, and	
		inhibitors	96
6		n dioxide fixation: the C_3 and C_4 pathways	100
	6.1	Experimental techniques	100
	6.2	The photosynthetic carbon reduction (Calvin) cycle	103
		Structure-function relationships	107
		Energetics of CO ₂ fixation	107
	6.5	Sucrose and starch synthesis	110
	6.6	The C ₄ (Kortschak, Hatch-Slack) pathway of CO ₂	
		fixation	112
		Crassulacean acid metabolism: CAM species	115
	6.8	Light-coupled reactions of chloroplasts other than CO ₂	
		fixation	115
		Photorespiration and glycollate metabolism	122
	6.10	Environmental factors affecting CO ₂ assimilation by	
		plants	125
7	Bacte	rial photosynthesis	128
	7.1	Classification	128
	7.2	Photosynthetic pigments and apparatus	129

		Content	s ix
	7.3	Photochemistry and electron transport	134
		Carbon dioxide fixation	136
	7.5	Light energy conversion by halobacteria	137
	7.6	Ecological significance of phototrophic bacteria	138
		A comparison of plant and bacterial electron transport	139
		Evolution of photosynthesis	144
8	Resea	rch in photosynthesis	147
	8.1	Is photosystem I essential for oxygenic photosynthesis?	147
	8.2	Protoplasts and cells	148
	8.3	Origin and development of chloroplasts	148
	8.4	Chloroplast genetics; expression and regulation of	
		genes; transgenic plants; site-directed mutagenesis	150
	8.5	Transport and assembly of cytoplasmically assembled	
		polypeptides into the chloroplast membranes;	
		exchange of ions and metabolites through the	
		chloroplast envelope	155
	8.6	Chloroplast structure	157
	8.7	The photosystem II oxygen-evolving reaction	160
	8.8	Photosystem II: structure and function of the reaction	
		centre	164
	8.9	Photosystem I	166
	8.10	The cytochrome $b_6 f$ complex: the Q cycle	170
	8.11	RuBisCO: structure and function	171
	8.12	Fluorescence as a probe for energy transfer and stress	
		physiology in photosynthesis	174
	8.13	Photoinhibition	178
	8.14	Energy redistribution between the two photosystems:	
		state transitions	183
	8.15	Role of light in the regulation of photosynthesis: the	
		ferredoxin-thioredoxin control system	185
	8.16	Whole plant studies and bioproductivity	187
	8.17	Photosynthesis and the greenhouse effect	190
	8.18	Mimicking photosynthesis	192
	8.19	Phytochromes	194
9	Labor	atory experiments	197
	9.1	Reference books for experiments	197
	9.2	Photosynthesis in whole plants and algae	198
	9.3	$\label{lem:preparation} \textbf{Preparation of protoplasts, chloroplasts and subchloroplast}$	
		membranes	198

x Contents

9.4 Separation and estimation of photosynthetic pigments and	400
proteins	199
9.5 Measurement of photosynthetic electron transport using	
oxygen electrode and/or spectrophotometer	199
9.6 Proton flux and photophosphorylation	200
Appendix: Abbreviations and prefixes used in the text	201
Further reading	203
Non-specialist books	203
More specialized books	203
Reviews and articles	204
More specialized articles	209
Index	211

Plate section is between pp. 66 and 67