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Simple Wave Solutions

Synopsis

Chapter 1 provides the background, both the model equations and some of
the mathematical transformations, needed to understand linear elastic waves.
Only the basic equations are summarized, without derivation. Both Fourier
and Laplace transforms and their inverses are introduced and important sign
conventions settled. The Poisson summation formula is also introduced and
used to distinguish between a propagating wave and a vibration of a bounded
body.

A linear wave carries information at a particular velocity, the group velocity,
which is characteristic of the propagation structure or environment. It is this
transmitting of information that gives linear waves their special importance.
In order to introduce this aspect of wave propagation, propagation in one-
dimensional periodic structures is discussed. Such structures are dispersive and
therefore transmit information at a speed different from the wavespeed of their
individual components.

1.1 Model Equations

The equations of linear elasticity consist of (1) the conservation of linear and
angular momentum, and (2) a constitutive relation relating force and deforma-
tion. In the linear approximation density ρ is constant. The conservation of
mechanical energy follows from (1) and (2). The most important feature of the
model is that the force exerted across a surface, oriented by the unit normal n j ,
by one part of a material on the other is given by the traction ti = τ j i n j , where
τ j i is the stress tensor. The conservation of angular momentum makes the stress
tensor symmetric; that is, τi j = τ j i . The conservation of linear momentum, in
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2 1 Simple Wave Solutions

differential form, is expressed as

∂kτki + ρ fi = ρ∂t∂t ui . (1.1)

The term f is a force per unit mass.
Deformation is described by using a strain tensor,

εi j = (∂i u j + ∂ j ui )/2, (1.2)

where ui is ith component of particle displacement. The symmetrical definition
of the deformation ensures that no rigid-body rotations are included. However,
the underlying dependence of the deformation is upon the ∇u. For a homoge-
neous, isotropic, linearly elastic solid, stress and strain are related by

τi j = λεkkδi j + 2µεi j , (1.3)

where λ and µ are Lamé’s elastic constants. Substituting (1.2) in (1.3), followed
by substituting the outcome into (1.1), gives one form of the equation of motion,
namely

(λ + µ)∂i∂kuk + µ∂ j∂ j ui + ρ fi = ρ∂t∂t ui . (1.4)

Written in vector notation, the equation becomes

(λ + µ)∇(∇ · u) + µ∇2u + ρ f = ρ∂t∂t u. (1.5)

When the identity ∇2u = ∇(∇ · u) − ∇ ∧ ∇ ∧ u is used, the equation can also
be written in the form

(λ + 2µ)∇(∇ · u) − µ∇ ∧ ∇ ∧ u + ρ f = ρ∂t∂t u. (1.6)

This last equation indicates that elastic waves have both dilitational ∇ · u and
rotational ∇ ∧ u deformations.

If ∂R is the boundary of a region R occupied by a solid, then commonly
t and u are prescribed on ∂R. When t is given over part of ∂R and u over
another part, the boundary conditions are said to be mixed. One very common
boundary condition is to ask that t = 0 everywhere on ∂R. This models the
case in which a solid surface is adjacent to a gas of such small density and
compressibility that it is almost a vacuum. When R is infinite in one or more
dimensions, special conditions are imposed such that a disturbance decays to
zero at infinity or radiates outward toward infinity from any sources contained
within R.
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1.1 Model Equations 3

Another common situation is that in which ∂R12 is the boundary between
two regions, 1 and 2, occupied by solids having different properties. Contact
between solid bodies is quite complicated, but in many cases it is usual to
assume that the traction and displacement, t and u, are continuous. This models
welded contact. One other simple continuity condition that commonly arises
is that between a solid and an ideal fluid. Because the viscosity is ignored, the
tangential component of t is set to zero, while the normal component of traction
and the normal component of displacement are made continuous.

These are only models and are often inadequate. To briefly indicate some
of the possible complications, consider two solid bodies pressed together. A
(linear) wave incident on such a boundary would experience continuity of trac-
tion and displacement when the solids press together, but would experience a
traction-free boundary condition when they pull apart (Comninou and Dundurs,
1977). This produces a complex nonlinear interaction.

The reader may consult Hudson (1980) for a succinct discussion of linear
elasticity or Atkin and Fox (1980) for a somewhat more general view.

1.1.1 One-Dimensional Models

We assume that the various wavefield quantities depend only on the variables
x1 and t . For longitudinal strain, u1 is finite, while u2 and u3 are assumed to be
zero, so that (1.2) combined with (1.3) becomes

τ11 = (λ + 2µ)∂1u1, τ22 = τ33 = λ∂1u1, (1.7)

and (1.1) becomes

(λ + 2µ)∂1∂1u1 + ρ f1 = ρ∂t∂t u1. (1.8)

For longitudinal stress, all the stress components except τ11 are assumed to be
zero. Now (1.3) becomes

τ11 = E∂1u1, E = µ
3λ + 2µ

λ + µ
, (1.9)

and

∂2u2 = ∂3u3 = −ν∂1u1, ν = λ

2(λ + µ)
. (1.10)

Now (1.1) becomes

E∂1∂1u1 + ρ f1 = ρ∂t∂t u1. (1.11)
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4 1 Simple Wave Solutions

Note that (1.8) and (1.11) are essentially the same, though they have somewhat
different physical meanings. The longitudinal stress model is useful for rods
having a small cross section and a traction-free surface. Stress components that
vanish at the surface are assumed to be negligible in the interior.

1.1.2 Two-Dimensional Models

Let us assume that the various wavefield quantities are independent of x3. As a
consequence, (1.1) breaks into two separate equations, namely

∂βτβ3 + ρ f3 = ρ∂t∂t u3, (1.12)

∂βτβα + ρ fα = ρ∂t∂t uα. (1.13)

Greek subscripts α, β = 1, 2 are used to indicate that the independent spatial
variables are x1 and x2. The case for which the only nonzero displacement
component is u3(x1, x2, t), namely (1.12), is called antiplane shear motion, or
SH motion for shear horizontal.

τ3β = µ∂βu3, (1.14)

giving, from (1.12),

µ∂β∂βu3 + ρ f3 = ρ∂t∂t u3. (1.15)

Note that this is a two-dimensional scalar equation, similar to (1.8) or (1.11).
The case for which u3 = 0, while the other two displacement components

are generally nonzero, (1.13), is called inplane motion. The initials P and SV
are used to describe the two types of inplane motion, namely compressional
and shear vertical, respectively. For this case (1.3) becomes

ταβ = λ∂γ uγ δαβ + µ(∂αuβ + ∂βuα), (1.16)

and

τ33 = λ∂γ uγ . (1.17)

The equation of motion remains (1.4); that is,

(λ + µ)∂α∂βuβ + µ∂β∂βuα + ρ fα = ρ∂t∂t uα. (1.18)

This last equation is a vector equation and contains two wave types, compres-
sional and shear, whose character we explore shortly. It leads to problems of
some complexity.
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1.1 Model Equations 5

These two-dimensional equations are the principal models used. The scalar
model, (1.14), allows us to solve complicated problems in detail without being
overwhelmed by the size and length of the calculations needed, while the vector
model, (1.18), allows us enough structure to indicate the complexity found in
elastic-wave propagation.

1.1.3 Displacement Potentials

When (1.4)–(1.6) are used, a boundary condition, such as t = 0, is relatively
easy to implement. However, in problems in which there are few boundary con-
ditions, it is often easier to cast the equations of motion into a simpler form and
allow the boundary condition to become more complicated. One way to do this
is to use the Helmholtz theorem (Phillips, 1933; Gregory, 1996) to express the
particle displacement u as the sum of a scalar ϕ and a vector potential ψ; that is,

u = ∇ϕ + ∇ ∧ψ, ∇ ·ψ = 0. (1.19)

The second condition is needed because u has only three components (the parti-
cular condition selected is not the only possibility). Assume f = 0. Substituting
these expressions into (1.6) gives

(λ + 2µ)∇[∇2ϕ − (
1/c2

L

)
∂t∂tϕ

] + µ∇ ∧ [∇2ψ− (
1/c2

T

)
∂t∂tψ

] = 0.

(1.20)

The equation can be satisfied if

∇2ϕ = (
1/c2

L

)
∂t∂tϕ, c2

L = (λ + 2µ)/ρ, (1.21)

∇2ψ = (
1/c2

T

)
∂t∂tψ, c2

T = µ/ρ. (1.22)

The terms cL and cT are the compressional or longitudinal wavespeed, and shear
or transverse wavespeed, respectively. The scalar potential describes a wave of
compressional motion, which in the plane-wave case is longitudinal, while the
vector potential describes a wave of shear motion, which in the plane-wave
case is transverse. Knowing ϕ and ψ, do we know u completely? Yes we do.
Proofs of completeness, along with related references, are given in Achenbach
(1973).

1.1.4 Energy Relations

The remaining conservation law of importance is the conservation of mecha-
nical energy. Again assume f = 0. This law can be derived directly from
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6 1 Simple Wave Solutions

(1.1)–(1.3) by taking the dot product of ∂t u with (1.1). This gives, initially,

∂ jτ j i∂t ui − ρ(∂t∂t ui )∂t ui = 0. (1.23)

Forming the product τklεkl , using (1.3), and making use of the decomposition
∂ j ui = ε j i + ω j i , where ω j i = (∂ j ui − ∂i u j )/2, allows us to write (1.23) as

1
2∂t (ρ∂t ui∂t ui + τkiεki ) + ∂k(−τki∂t ui ) = 0. (1.24)

The first two terms become the time rates of change of

K = 1
2ρ∂t uk∂t uk, U = 1

2τi jεi j . (1.25)

These are the kinetic and internal energy density, respectively. The remaining
term is the divergence of the energy flux, F, where F is given by

F j = −τ j i∂t ui . (1.26)

Then (1.24) can be written as

∂E/∂t + ∇ · F = 0, (1.27)

where E = K + U and is the energy density. This is the differential statement
of the conservation of mechanical energy. To better understand that the energy
flux or power density is given by (1.26), consider an arbitrary region R, with
surface ∂R. Integrating (1.27) over R and using Gauss’ theorem gives

d

dt

∫
R
E(x, t) dV = −

∫
∂R

F · n̂ d S. (1.28)

Therefore, as the mechanical energy decreases within R, it radiates outward
across the surface ∂R at a rate F · n̂.

1.2 The Fourier and Laplace Transforms

All waves are transient in time. One useful representation of a transient wave-
form is its Fourier one. This representation imagines the transient signal de-
composed into an infinite number of time-harmonic or frequency components.
One important reason for the usefulness of this representation is that the trans-
mitter, receiver, and the propagation structure usually respond differently to the
different frequency components. The linearity of the problem ensures that we
can work out the net propagation outcomes for each frequency component and
then combine the outcomes to recreate the received signal.
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1.2 The Fourier and Laplace Transforms 7

The Fourier transform is defined as

ū(x, ω) =
∫ ∞

−∞
eiωt u(x, t) dt. (1.29)

The variable ω is complex. Its domain is such as to make the above integral
convergent. Moreover, ū is an analytic function within the domain of conver-
gence, and once known, can be analytically continued beyond it.1 The inverse
transform is defined as

u(x, t) = 1

2π

∫ ∞

−∞
e−iωt ū(x, ω) dω. (1.30)

Thus we have represented u as a sum of harmonic waves e−iωt ū(x, ω). Note
that there is a specific sign convention for the exponential term that we shall
adhere to throughout the book.

A closely related transform is the Laplace one. It is usually used for initial-
value problems so that we imagine that for t < 0, u(x, t) is zero. This is not es-
sential and its definition can be extended to include functions whose
t-dependence extends to negative values. This transform is defined as

ū(x, p) =
∫ ∞

0
e−pt u(x, t) dt. (1.31)

As with ω, p is a complex variable and its domain is such as to make ū(x, p)
an analytic function of p. The domain is initially defined as 
(p) > 0, but
the function can be analytically continued beyond this. Note that p = −iω so
that, when t ∈ [0, ∞), �(ω) > 0 gives the initial domain of analyticity for
ū(x, ω). The inverse transform is given by

u(x, t) = 1

2π i

∫ ε+i∞

ε−i∞
ept ū(x, p) dp, (1.32)

where ε ≥ 0. The expressions for the inverse transforms, (1.30) and (1.32), are
misleading. In practice we define the inverse transforms on contours that are
designed to capture the physical features of the solution. A large part of this
book will deal with just how those contours are selected. But, for the present,
we shall work with these definitions.

1 Analytic functions defined by contour integrals, including the case in which the contour extends
to infinity, are discussed in Titchmarsh (1939) in a general way and in more detail by Noble
(1988).
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8 1 Simple Wave Solutions

Consider the case of longitudinal strain. Imagine that at t = −∞ a disturbance
started with zero amplitude. Taking the Fourier transform of (1.8) gives

(
d2ū1/dx2

1

) + k2ū1 = 0, (1.33)

where k = ω/cL and cL is the compressional wavespeed defined in (1.21). The
parameter k is called the wavenumber. Here (1.33) has solutions of the form

ū1(x1, ω) = A(ω)e±ikx1 . (1.34)

If we had sought a time-harmonic solution of the form

u1(x1, t) = ū1(x1, ω)e−iωt , (1.35)

we should have gotten the same answer except that e−iωt would be present. In
other words, taking the Fourier transform of an equation over time or seeking
solutions that are time harmonic are two slightly different ways of doing the
same operation.

For (1.35), it is understood that the real part can always be taken to obtain
a real disturbance. Much the same happens in using (1.30). In writing (1.30)
we implicitly assumed that u(x, t) was real. That being the case, ū(x, ω) =
ū∗(x, −ω), where the superscript asterisk to the right of the symbol indicates
the complex conjugate. From this it follows that

u(x, t) = 1

π



∫ ∞

0
e−iωt ū(x, ω) dω. (1.36)

The advantage of this formulation of the inverse transform is that we may
proceed with all our calculations by using an implied e−iωt and assuming ω is
positive. The importance of this will become apparent in subsequent chapters.
Now (1.36) can be regarded as a generalization of the taking of the real part of
a time-harmonic wave (1.35).

Problem 1.1 Transform Properties

Check that ū(x, ω) = ū∗(x, −ω) and derive (1.36) from (1.30). The reader
may want to consult a book on the Fourier integral such as that by Papoulis
(1962).

When the plus sign is taken, (1.35) is a time-harmonic, plane wave propagat-
ing in the positive x1 direction. We assume that the wavenumber k is positive,
unless otherwise stated. The wave propagates in the positive x1 direction be-
cause the term (kx1 − ωt) remains constant, and hence u1 remains constant,
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1.2 The Fourier and Laplace Transforms 9

only if x1 increases as t increases. The speed with which the wave propagates
is cL . The term ω is the angular frequency or 2π f , where f is the frequency.
That is, at a fixed position, 1/ f is the length of a temporal oscillation. Similarly,
k, the wavenumber, is 2π/λ, where λ, the wavelength, is the length of a spatial
oscillation.

Note that if we combine two of these waves, labeled u+
1 and u−

1 , each going
in opposite directions, namely

u+
1 = Aei(kx1−ωt), u−

1 = Ae−i(kx1+ωt), (1.37)

we get

u1 = Ae−iωt 2 cos(kx1). (1.38)

Taking the real part gives

u1 = 2|A| cos(ωt + α) cos(kx1). (1.39)

We have taken A as complex so that α is its argument. This disturbance does
not propagate. At a fixed x1 the disturbance simply oscillates in time, and at a
fixed t it oscillates in x1. The wave is said to stand or is called a standing wave.

Problem 1.2 Fourier Transform

Continue with the case of longitudinal strain and consider the following
boundary, initial-value problem. Unlike the previous discussion in which the
disturbance began, with zero amplitude, at −∞, here we shall introduce a distur-
bance that starts up at t = 0+. Consider an elastic half-space, occupying x1 ≥ 0,
subjected to a nonzero traction at its surface. The problem is one dimensional,
and it is invariant in the other two so that (1.8), the equation for longitudinal
strain, is the equation of motion. At x1 = 0 we impose the boundary condition
τ11 = −P0 e−ηt H (t), where H (t) is the Heaviside step function and P0 is a con-
stant. As x1 → ∞ we impose the condition that any wave propagate outward in
the positive x1 direction. Why? Moreover, we ask that, for t < 0, u1(x1, t) = 0
and ∂t u1(x1, t) = 0. Note that, using integration by parts, the Fourier transform,
indicated by F, of the second time derivative is

F [∂t∂t u1] = −ω2ū1(x1, ω) + iωu1(x1, 0−) − ∂t u1(x1, 0−). (1.40)

In deriving this expression we have integrated from t = 0− to ∞ so as to include
any discontinuous behavior at t = 0. Taking the Fourier transform of (1.8) gives
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10 1 Simple Wave Solutions

(1.33). Show that the inverse transform of the stress component τ11 is given by

τ11(x1, t) = P0

2π i

∫ ∞

−∞

ei(kx1−ωt)

ω + iη
dω. (1.41)

In the course of making this step you will need to chose between the solutions to
the transformed equation, (1.33). Why is the solution leading to (1.41) selected?
Note that, if the disturbance is to decay with time, η must be positive. Next show
that

τ11(x1, t) = −P0 H (t − x1/cL )e−η(t−x1/cL ). (1.42)

Explain how the conditions for convergence of the integral, as its contour is
closed at infinity, give rise to the Heaviside function. Note how the sign conven-
tions for the transform pair, by affecting where the inverse transform converges,
give a solution that is causal.

Problem 1.3 Laplace Transform

Solve Problem 1.2 by using the Laplace transform over time. Why select the
solution e−px1/cL ? How does this relate to the demand that waves be outgoing
at ∞?

The solution of Problem 1.2 suggests how we shall define the Fourier trans-
form over the spatial variable x . Suppose we have taken the temporal transform
obtaining ū(x, ω). Then its Fourier transform over x is defined as

∗ū(k, ω) =
∫ ∞

−∞
e−ikx u(x, t) dx, (1.43)

and its inverse transform is

ū(x, ω) = 1

2π

∫ ∞

−∞
eikx ∗ū(k, ω) dk . (1.44)

Again note the sign conventions for the transform pair. This will remain the
convention throughout the book. Moreover, note that

u(x, t) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
ei(kx−ωt)∗ū(k, ω) dω dk . (1.45)

This shows that quite arbitrary disturbances can be decomposed into a sum of
time-harmonic, plane waves and thereby indicates that the study of such waves
is very central to the understanding of linear waves.
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