

Index

aging, 21

application of Laplace transform beam on a viscoelastic support, 197-199 cellulose acetate, 11 correspondence principle characteristic times, general linear response beams, 188 definitions, creep and stress relaxation times, boundary value problems, 235 72-75 free oscillations of a mass, 229-230 influence of temperature, 256 material and process times mechanical analog N Maxwell elements in parallel, 45 influence on constant strain rate histories, 92, three-parameter solid, 40 99, 100 relating characteristic creep and stress relaxation times, 73–74 influence on constant stress rate histories, influence on forced oscillations, 225-228 relating creep compliance and stress relaxation function, 71 influence of temperature, 258 solving for strain in terms of stress history; rapidly applied histories, 75-77, 80 Problem 4.6, 84 slowly applied histories, 77-80 Stieltjes convolution algebra, 305 process times, 75, 77 three bar structure relations, creep and stress relaxation times, 73, cooling induced warping, 291 74 frozen-in forces, 283 characteristic times, mechanical analogs three-dimensional constitutive equation, 163 appearance in complex moduli, 126-130 asymptotic behavior Kelvin-Voigt model, 38 beam on viscoelastic support, 198 relating material properties, 68, 69; Problems three-parameter solid, 44 4.12-4.19, 85-87 relation between times, 44 response to specific histories, 81, 82 stress relaxation axial loads on structures, 172 Maxwell model, 33 three-parameter solid, 43 beam deflections under transverse loads complex compliance correspondence principle, 185, 189 general linear material, 122 delayed contact, 190 influence of temperature, 258 Kelvin-Voigt model, 127 extrusion, 199 formulation of equations, 182 low and high frequency limits, 133, 134 hard supports, 185 Maxwell model, 126 moment-deflection relation, 185 three-parameter solid, 129-130 shear stresses, 184 complex modulus traveling load, 202 general linear material, 118, 119 viscoelastic support, 195 general mechanical analog, 127 bolt and tube example, 172 influence of temperature, 258 Kelvin-Voigt model, 127 low and high frequency limits, 130–132 boundary value problems, 232 boundary conditions, 233–234 correspondence principle Maxwell model, 126 breakdown, 237 three-parameter solid, 129 example: pressurized cylinder, 238 constant strain rate histories, 88 example: torsion of non-circular bars, 240 deformation statement, 235-236 strain rate relative to process time, 92 direct solution method: circular shear, 243 stress-strain plot, 89, 92 deformation and recovery, 92-97 field equations, 233 in Cartesian coordinates, 308-309 influence of strain rate, 98, 99 in cylindrical coordinates, 308-309 properties of stress-time response, 94-96

butadiene-styrene copolymers, 250

constant strain rate histories (cont.)	bulk complex modulus, 163
repeated cycles, 100	complex Poisson's ratio, 161–162
stress–strain plot, 97	extensional complex compliance, 161
work done, 98–100	extensional complex modulus, 161
limit case: step strain, 103–105	relations among properties, 162
limit case: step strain and recovery 100-103	shear complex compliance, 162
constant stress rate histories, 105	shear complex modulus, 162
loading, 106	strain amplitudes in terms of stress
stress–strain plot, 107	amplitudes, 162
loading and unloading, 106–109	strain in terms of stress history, 154
properties of strain–time response, 106–108	stress in terms of strain history, 160
stress–strain plots, 109	summary of relations, 166–168
constitutive equation, general linear material	uniaxial extension, 150
continuity assumption, 57	transverse strains, 151
creep form, 64, 65; Problem 3.1, 65	volumetric response, 158
equivalent forms, 64–65	special assumptions, 159–160
fading memory, 62, 63	correspondence principle
linearity assumption, 58	beams, 185, 189
non-aging assumption, 55	boundary value problems, 234–236
response function, step strain, 59	breakdown, 277
strain jump assumption, 56	example: pressurized cylinder, 238
stress relaxation form, 61, 64, 65	example: torsion of non-circular bars, 240
superposition of step strains, 58-60	creep compliance
superposition of strain pulses, 62, 63	in terms of complex compliance, 138, 139, 140
constitutive equation, influence of temperature	Kelvin-Voigt model, 38
history, 268	Maxwell model, 33
constitutive equation, mechanical analogs	N Kelvin-Voigt elements in series, 50
differential form	N Maxwell elements in parallel, 49
Kelvin–Voigt model, 36	three-parameter solid, 43
Maxwell model, 29	creep response
N Kelvin–Voigt elements in series, 50	Kelvin–Voigt model, 38
N Maxwell elements in parallel, 47	Maxwell model, 33
three-parameter solid, 41	N Maxwell elements in parallel, 49
integral form, in terms of strain history	three-parameter solid, 43
Kelvin-Voigt model, 39	1
Maxwell model, 34	deviatoric stress components, 157
N Maxwell elements in parallel, 49	differential operator algebra, 293–294
three-parameter solid, 45	dynamics of rigid bodies
integral form, in terms of stress history	forced oscillations
Kelvin-Voigt model, 39	amplitudes, displacement, and force
Maxwell model, 35	elastic support, 224
N Maxwell elements in parallel, 50	general linear support, 221–224
three-parameter solid, 45	spring-damper (Kelvin-Voigt) support,
linear elastic solid, 1	225
linear viscous fluid, 3	three-parameter solid support, 225
constitutive equation, three-dimensional response	equation of motion, 221
isotropy, 150, 152, 153, 154, 155–157	influence of stress relaxation on resonance,
Laplace transform, 163	224–228
linearity, 149	free oscillations
material properties, definition	equation of motion, 229
bulk, 158	solutions
extension, 151	spring-damper (Kelvin-Voigt) support,
Poisson's ratio, 151	228–229
shear, 154	three-parameter solid, 229–230
Poisson's ratio, extension and bulk relations	properties of supports, 219–221
functions of frequency, 163	
functions of time, 158	experimental results, 10
Laplace transform, 164	butadiene–styrene copolymers, 250
Poisson's ratio, extension and shear relations	cellulose acetate, 11
functions of frequency, 164	GR-S, 13
functions of time, 156–157	low density polyethylene, 15
Laplace transform, 164	oriented polypropylene, 20
shear response, 153	PBAA solid rocket propellant, 14
sinusoidal histories, 160	polyethylene, influence of temperature, 260-262
bulk complex compliance, 163	polyisobutylene, 254

polymethyl methacrylate, 13	low density polyethylene, 15
rayon laminate, 11	
tan δ vs. frequency, 131	material properties
(); (2 (2)	connection diagram for properties, 140
fading memory, 62, 63	properties for creep, 16
strain history example, 81	properties for sinusoidal oscillations, 16
stress history example, 82	complex compliance, 122
fluid-like response, 7, 8, 9 complex moduli, low and high frequency limits,	complex modulus, 118
131–133	properties for stress relaxation, 16
creep compliance, 69	three-dimensional response
viscosity–stress relaxation function relation, 70	bulk complex compliance, 163 bulk complex modulus, 163
Fourier integral theorem, Fourier transform, 135,	bulk creep compliance, 158
136	bulk relaxation modulus, 158
even functions, 136, 137	complex Poisson's ratio, 161–162
odd functions, 135, 138	extensional complex compliance, 161
odd faifeliolis, 155, 156	extensional complex modulus, 161
glass transition temperature, 255	extensional creep compliance, 151
GR-S, 13	extensional relaxation modulus, 151
	Poisson's ratio as function of time, 151–152
initial (jump) conditions	Poisson's ratio, extension and bulk relations,
Kelvin–Voigt model, 36, 37	158, 163
Maxwell model, 30–32	Poisson's ratio, extension and shear relations
N Maxwell elements in parallel, 47	156–157, 163
three-parameter solid, 41	shear complex compliance, 162
isochrones, 19, 20, 21, 22; Problem 1.2, 25;	shear complex modulus, 162
Problem 1.7, 27	shear creep compliance, 154
creep, 19, 20, 22	shear relaxation modulus, 154
stress relaxation, 22, 25	strain amplitudes in terms of stress
isotropy, 150, 152, 153, 154, 155–157	amplitudes, 162
	Maxwell model, 28
Kelvin–Voigt model, 35	arbitrary strain history, 34
arbitrary strain history, 39	arbitrary stress history, 34–35
arbitrary stress history, 39	characteristic stress relaxation time, 33
characteristic creep time, 38	comments, 35
comments, 39	complex compliance, 126
complex compliance, 127	complex modulus, 126
complex modulus, 127	complex viscosity, 127
constitutive relation	constitutive relation
differential form, 36	differential form, 29
integral form in terms of strain history, 39	integral form in terms of strain history, 34
integral form in terms of stress history, 39	integral form in terms of stress history, 35
creep compliance, 38 creep response, 38–39	creep compliance, 34 creep response, 33
dynamics of a rigid body, 220, 225	initial (jump) conditions, 30–32
initial (jump) conditions, 36–37	mechanical analog, 29
mechanical analog, 35	stress relaxation function, 33
stress relaxation function, 38	stress relaxation response, 32–33
stress relaxation response, 37, 38	mean hydrostatic stress, 157
oreso relation response, 57, 55	mechanical analog
Laplace transforms	comments, 51
common functions, 295–296	Kelvin-Voigt model, 35
convolution, 297	linear elastic solid, 2
limit theorems, 297	linear viscous fluid, 3, 4
transforms of derivatives, 296	Maxwell model, 29
linear elastic response, 1	N Kelvin-Voigt elements in series, 50
linear viscous fluid response, 3	N Maxwell elements in parallel, 45
linearity, three-dimensional stress states, 150	three-parameter solid, 40
linearity, uniaxial response, 17; Problem 1.1, 24	viscoelastic response, 10
constitutive equation, arbitrary temperature	microstructure, 6
histories, 268	
general constitutive equation, 58	N Kelvin-Voigt elements in series, 50
scaling, 17	constitutive relation
superposition, 19	differential form, 50
loss modulus, 125	integral form in terms of strain history, 50

N Kelvin–Voigt elements in series (cont.)	polymethyl methacrylate, 255
integral form in terms of stress history, 50	sinusoidal strain histories, 115
creep compliance, 50	complex modulus, 118
mechanical analog, 50	low and high frequency limits, 131, 132
N Maxwell elements in parallel, 45	mechanical analogs, 125-130
arbitrary strain history, 49	complex viscosity, 125
arbitrary stress history, 50	dynamics of a rigid body, 223
comments, 50	stress history, 116, 117
constitutive relation	three-dimensional response (see Constitutive
differential form, 47	equation, three-dimensional response)
integral form in terms of strain history, 49	sinusoidal strain histories, qualitative features
integral form in terms of stress history, 50	linear elastic solid, 3
creep compliance, 49	linear viscous fluid, 5
creep response, 49	viscoelastic response, 9
initial (jump) conditions, 47	sinusoidal stress histories, 120
mechanical analog, 45	complex compliance, 122
stress relaxation function, 48	low and high frequency limits, 125–130
stress relaxation response, 48	mechanical analogs, 125–130
: . 1 1 20	strain history, 121
oriented polypropylene, 20	three-dimensional response (see Constitutive
DDAA1: J 11 14	equation, three-dimensional response)
PBAA solid rocket propellant, 14	slowly applied histories, 77, 80
Poisson's ratio	solid-like response, 7, 8, 9, 68
function of frequency, 161–162	complex moduli, low and high frequency limits, 132, 133
function of time, 151 relation with bulk and extension properties	spectra, relaxation and creep, 51, 52
functions of frequency, 163	standard linear solid (<i>see</i> Three-parameter solid)
functions of time, 158–159	
relation with shear and extension properties	step strain response general linear material, 59
functions of frequency, 163	Kelvin–Voigt model, 37
functions of frequency, 105 functions of time, 156–157	linear elastic solid, 2–3
polyethylene, temperature increase during work,	linear viscous fluid, 4–5
260–262	Maxwell model, 32
polyisobutylene, 254	N Maxwell elements in parallel, 48
polymethyl methacrylate, 13, 251, 255	three-parameter solid, 42
polyvinyl acetate, 248	viscoelastic response, 7
principal directions of stress and strain, 164	step stress response
Prony series, 49	Kelvin-Voigt model, 38
pulses, 62	linear elastic solid, 2–3
pure bending, 176–182	linear viscous fluid, 3–4
moment–curvature relation, 182	Maxwell model, 33
moment–stress relation, 182	N Kelvin–Voigt elements in series, 50
neutral axis, 178, 181	N Maxwell elements in parallel, 49
	three-parameter solid, 33
rapidly applied histories, 75–77, 80	viscoelastic response, 7
rayon laminate, 11	Stieltjes convolution, 305
reduced time	algebra, 305–306
calculation in examples, 267, 272–274, 277–	storage modulus, 125
278, 286–287 derivation 262, 266	stress relaxation function
derivation, 262–266	general linear material, 59
intrinsic or pseudo-time, 266 relation between creep and relaxation properties	in terms of complex modulus, 138, 139 Kelvin–Voigt model, 38
frequency dependence, 124	Maxwell model, 33
Laplace transform, 71	N Maxwell elements in parallel, 48
time dependence, 67–72	three-parameter solid, 42
Riemann–Lebesque Theorem, 132	time-temperature superposition, 251
Riemann–Stieltjes integral, 61	stress relaxation response
Kiemann-Suenjes integral, 01	Kelvin–Voigt model, 37
scaling, 17; Problem 1.2, 25	Maxwell model, 32
isochrones, 19–22	N Maxwell elements in parallel, 48
tests for scaling, 18–19	three-parameter solid, 42, 43
use in developing general linear constitutive	stress–strain plot
equation, 59, 60	constant strain rate deformation, 89–92
shift function, 253	and recovery, 97
polyisobutylene, 254	constant stress rate load and unload, 109

linear elastic response, 2	structural examples
linear viscous fluid, 5	bolt and tube example, 172
sinusoidal oscillations; Problem 6.16, 144	delayed contact example, 190
step strain and recovery history, 102-103	forced oscillations, 225
viscoelastic response, 9	free oscillations, 229
structural analysis	three bar structure, 269-271, 271-272, 276,
correspondence principle, 185, 189	278, 280, 284
direct methods	traveling load example, 202
bolt and tube example, 172	viscoelastic support example, 195
delayed contact example, 190	time-temperature superposition
extrusion example, 199	amorphous polymers, 253
traveling load example, 202	definition, 251
viscoelastic support example, 195	experimental support, 253
dynamics of a rigid body, 219	torsion of circular bars, 207–212
superposition, 19	moment–angle of twist relation, 211
two-step test, 20, 21, 24	moment–stress relation, 212
two-step test, 20, 21, 24	sinusoidal oscillations, temperature increase in
tomporature officets	
temperature effects influence on characteristic stress relaxation	polyethylene, 260–262 transformation of coordinate axes
	_
time, 256	strain transformation, 156
influence on complex compliance, 258	stress transformation, 156
influence on complex modulus, 258	pt>
influence on creep compliance, 257	
influence on stress relaxation, 248–250	viscoelastic response, qualitative features
polyethylene, work and temperature increase,	creep, 7, 8
260–262	fluid-like response, 8, 9
polymethyl methacrylate, 251	solid-like response, 8, 9
time-temperature superposition, 251	stress relaxation, 9
time-varying temperatures, 262	Volterra integral equation
thermal expansion function, 247	bolt and tube example, 174
thermal histories	delayed contact example, 195
constitutive equation for uniaxial response, 268	free oscillations, 229
influence on stress relaxation, 262	methods of solution
thermal strain, 247	Laplace transform, 301
three bar structure examples, thermo-viscoelastic	numerical methods, 302
response	successive approximations, 300
formulation, 269	relating creep compliance and stress relaxation
frozen-in deformation, 271–276	function, 68
frozen-in forces, 276–285	three bar structure examples, 279, 282, 290-
frozen-in warping, 285–292	291
three-parameter solid, 40	viscoelastic support example, 197
arbitrary strain history, 44	volumetric strain, 158
arbitrary stress history, 45	,
characteristic times	WILE CONTRACTOR
appearance in complex moduli, 129	WLF equation, 256
creep, 44	work
relation between times, 44	general linear material
stress relaxation, 43	constant strain rate deformation and
comments, 45	recovery, 98–100
complex compliance, 129, 130	general deformation history, 140–142;
complex modulus, 129	Problem 6.22, 147
constitutive relation	influence of temperature, sinusoidal histories
differential form, 41	259
integral form in terms of strain history, 45	sinusoidal stress or strain histories, 124;
integral form in terms of stress history, 45	Problem 6.5, 142
creep compliance, 43	step strain and recovery, 102, 103
creep response, 43–44	linear elastic solid, 3
initial (jump) conditions, 41	linear viscous fluid, 5
mechanical analog, 40	polyethylene, temperature increase during
stress relaxation function, 42	work, 260–262
stress relaxation response, 42	