Index

aging, 21
application of Laplace transform
beam on a viscoelastic support, 197–199
correspondence principle
beams, 188
boundary value problems, 235
free oscillations of a mass, 229–230
mechanical analog
N Maxwell elements in parallel, 45
three-parameter solid, 40
relating characteristic creep and stress
relaxation times, 73–74
relating creep compliance and stress relaxation
function, 71
solving for strain in terms of stress history;
Problem 4.6, 84
Stieltjes convolution algebra, 305
three bar structure
cooling induced warping, 291
frozen-in forces, 283
three-dimensional constitutive equation, 163
asymptotic behavior
beam on viscoelastic support, 198
relating material properties, 68, 69; Problems
4.12–4.19, 85–87
response to specific histories, 81, 82
axial loads on structures, 172
beam deflections under transverse loads
correspondence principle, 185, 189
delayed contact, 190
extrusion, 199
formulation of equations, 182
hard supports, 185
moment–deflection relation, 185
shear stresses, 184
traveling load, 202
viscoelastic support, 195
bolt and tube example, 172
boundary value problems, 232
boundary conditions, 233–234
correspondence principle
breakdown, 237
equation: pressurized cylinder, 238
equation: torsion of non-circular bars, 240
statement, 235–236
direct solution method: circular shear, 243
field equations, 233
in Cartesian coordinates, 308–309
in cylindrical coordinates, 308–309
butadiene–styrene copolymers, 250
cellulose acetate, 11
characteristic times, general linear response
definitions, creep and stress relaxation times,
72–75
influence of temperature, 256
materi, mechanical analogs
influence on constant strain rate histories, 92,
99, 100
influence on constant stress rate histories,
108
influence on forced oscillations, 225–228
influence of temperature, 258
rapidly applied histories, 75–77, 80
slowly applied histories, 77–80
process times, 73, 77
relations, creep and stress relaxation times, 73,
74
characteristic times, mechanical analogs
appearance in complex moduli, 126–130
creep
Kelvin–Voigt model, 38
three-parameter solid, 44
relation between times, 44
stress relaxation
Maxwell model, 33
three-parameter solid, 43
complex compliance
general linear material, 122
influence of temperature, 258
Kelvin–Voigt model, 127
low and high frequency limits, 133, 134
Maxwell model, 126
three-parameter solid, 129–130
complex modulus
general linear material, 118, 119
general mechanical analog, 127
influence of temperature, 258
Kelvin–Voigt model, 127
low and high frequency limits, 130–132
Maxwell model, 126
three-parameter solid, 129
constant strain rate histories, 88
defor, deformation
strain rate relative to process time, 92
stress–strain plot, 89, 92
defor, deformation and recovery, 92–97
influence of strain rate, 98, 99
properties of stress–time response, 94–96
INDEX

constant strain rate histories (cont.) 163
repeated cycles, 100
stress–strain plot, 97
work done, 98–100
limit case: step strain, 103–105
limit case: step strain and recovery 100–103
constant stress rate histories, 105
loading, 106
stress–strain plot, 107
loading and unloading, 106–109
properties of strain–time response, 106–108
stress–strain plots, 109
constitutive equation, general linear material
continuity assumption, 57
creep form, 64, 65; Problem 3.1, 65
equivalent forms, 64–65
fading memory, 62, 63
linearity assumption, 58
non–aging assumption, 55
response function, step strain, 59
strain jump assumption, 56
stress relaxation form, 61, 64, 65
superposition of step strains, 58–60
superposition of strain pulses, 62, 63
constitutive equation, influence of temperature
history, 265
constitutive equation, mechanical analogs
differential form
Kelvin–Voigt model, 36
Maxwell model, 29
N Kelvin–Voigt elements in series, 50
N Maxwell elements in parallel, 47
three–parameter solid, 41
integral form, in terms of strain history
Kelvin–Voigt model, 39
Maxwell model, 34
N Maxwell elements in parallel, 49
three–parameter solid, 45
integral form, in terms of stress history
Kelvin–Voigt model, 39
Maxwell model, 34
N Maxwell elements in parallel, 50
three–parameter solid, 45
linear elastic solid, 1
linear viscous fluid, 3
constitutive equation, three–dimensional response
isotropy, 150, 152, 153, 154, 155–157
Laplace transform, 163
linearity, 149
material properties, definition
bulk, 158
extension, 151
Poisson’s ratio, 151
shear, 154
Poisson’s ratio, extension and bulk relations
functions of frequency, 163
functions of time, 158
Laplace transform, 164
Poisson’s ratio, extension and shear relations
functions of frequency, 164
functions of time, 156–157
Laplace transform, 164
shear response, 153
sinusoidal histories, 160
bulk complex compliance, 163
bulk complex modulus, 163
complex Poisson’s ratio, 161–162
extensional complex compliance, 161
extensional complex modulus, 161
relations among properties, 162
shear complex compliance, 162
shear complex modulus, 162
strain amplitudes in terms of stress
amplitudes, 162
strain in terms of stress history, 154
stress in terms of stress history, 160
summary of relations, 166–168
uniaxial extension, 150
transverse strains, 151
volumetric response, 158
special assumptions, 159–160
correspondence principle
beams, 185, 189
boundary value problems, 234–236
breakdown, 277
e example: pressurized cylinder, 238
e example: torsion of non–circular bars, 240
creep compliance
in terms of complex compliance, 138, 139, 140
Kelvin–Voigt model, 38
Maxwell model, 33
N Kelvin–Voigt elements in series, 50
N Maxwell elements in parallel, 49
three–parameter solid, 43
creep response
Kelvin–Voigt model, 38
Maxwell model, 33
N Maxwell elements in parallel, 49
three–parameter solid, 43
deviatoric stress components, 157
differential operator algebra, 293–294
dynamics of rigid bodies
forced oscillations
amplitudes, displacement, and force
elastic support, 224
general linear support, 221–224
spring–damper (Kelvin–Voigt) support, 225
three–parameter solid support, 225
equation of motion, 221
influence of stress relaxation on resonance, 224–228
free oscillations
equation of motion, 229
solutions
spring–damper (Kelvin–Voigt) support, 228–229
three–parameter solid, 229–230
properties of supports, 219–221
experimental results, 10
butadiene–styrene copolymers, 250
cellulose acetate, 11
GR–S, 13
low density polyethylene, 15
oriented polypropylene, 20
PBAA solid rocket propellant, 14
polyethylene, influence of temperature, 260–262
polyisobutylene, 234
polymethyl methacrylate, 13
rayon laminate, 11
tan δ vs. frequency, 131
fading memory, 62, 63
strain history example, 81
stress history example, 82
fluid-like response, 7, 8, 9
complex moduli, low and high frequency limits, 131–133
creep compliance, 69
viscosity–stress relaxation function relation, 70
Fourier integral theorem, Fourier transform, 135, 136
even functions, 136, 137
odd functions, 135, 138
glass transition temperature, 255
GR-S, 13
initial (jump) conditions
Kelvin–Voigt model, 36, 37
Maxwell model, 30–32
N Maxwell elements in parallel, 47
three-parameter solid, 41
isochrones, 19, 20, 21, 22; Problem 1.2, 25;
Problem 1.7, 27
creep, 19, 20, 22
stress relaxation, 22, 25
isotropy, 150, 152, 153, 154, 155–157
Kelvin–Voigt model, 35
arbitrary strain history, 39
arbitrary stress history, 39
characteristic creep time, 38
comments, 39
complex compliance, 127
complex modulus, 127
constitutive relation
differential form, 36
integral form in terms of strain history, 39
integral form in terms of stress history, 39
creep compliance, 38
creep response, 38–39
dynamics of a rigid body, 220, 225
initial (jump) conditions, 36–37
mechanical analog, 35
stress relaxation function, 38
stress relaxation response, 37, 38
Laplace transforms
common functions, 295–296
convolution, 297
limit theorems, 297
transforms of derivatives, 296
linear elastic response, 1
linear viscous fluid response, 3
linearity, three-dimensional stress states, 150
linearity, uniaxial response, 17; Problem 1.1, 24
constitutive equation, arbitrary temperature
histories, 268
general constitutive equation, 58
scaling, 17
superposition, 19
loss modulus, 125

low density polyethylene, 15
material properties
connection diagram for properties, 140
properties for creep, 16
properties for sinusoidal oscillations, 16
complex compliance, 122
complex modulus, 118
properties for stress relaxation, 16
three-dimensional response
bulk complex compliance, 163
bulk complex modulus, 163
bulk creep compliance, 158
bulk relaxation modulus, 158
complex Poisson’s ratio, 161–162
extensional complex compliance, 161
extensional complex modulus, 161
extensional creep compliance, 151
extensional relaxation modulus, 151
Poisson’s ratio as function of time, 151–152
Poisson’s ratio, extension and bulk relations,
158, 163
Poisson’s ratio, extension and shear relations,
156–157, 163
shear complex compliance, 162
shear complex modulus, 162
shear creep compliance, 154
shear relaxation modulus, 154
strain amplitudes in terms of stress
amplitudes, 162
Maxwell model, 28
arbitrary strain history, 34
arbitrary stress history, 34–35
characteristic stress relaxation time, 33
comments, 35
complex compliance, 126
complex modulus, 126
complex viscosity, 127
constitutive relation
differential form, 29
integral form in terms of strain history, 34
integral form in terms of stress history, 35
creep compliance, 34
creep response, 33
initial (jump) conditions, 30–32
mechanical analog, 29
stress relaxation function, 33
stress relaxation response, 32–33
mean hydrostatic stress, 157
mechanical analog
comments, 51
Kelvin–Voigt model, 35
linear elastic solid, 2
linear viscous fluid, 3, 4
Maxwell model, 29
N Kelvin–Voigt elements in series, 50
N Maxwell elements in parallel, 45
three-parameter solid, 40
viscoelastic response, 10
microstructure, 6
N Kelvin–Voigt elements in series, 50
constitutive relation
differential form, 50
integral form in terms of strain history, 50
INDEX

N Kelvin–Voigt elements in series (cont.), 50
integral form in terms of stress history, 50
creep compliance, 50
mechanical analog, 50
N Maxwell elements in parallel, 45
arbitrary strain history, 49
arbitrary stress history, 50
comments, 50
constitutive relation
differential form, 47
integral form in terms of strain history, 49
integral form in terms of stress history, 50
creep compliance, 49
creep response, 49
initial (jump) conditions, 47
mechanical analog, 45
stress relaxation function, 48
stress relaxation response, 48
oriented polypropylene, 20
PBA solid rocket propellant, 14
Poisson’s ratio
function of frequency, 161–162
function of time, 151
relation with bulk and extension properties
functions of frequency, 163
functions of time, 158–159
relation with shear and extension properties
functions of frequency, 163
functions of time, 156–157
polyethylene, temperature increase during work,
260–262
polysobutylene, 254
polymethyl methacrylate, 13, 251, 255
polyvinyl acetate, 248
principal directions of stress and strain, 164
Prony series, 49
pulses, 62
pure bending, 176–182
moment–curvature relation, 182
moment–stress relation, 182
neutral axis, 178, 181
rapidly applied histories, 75–77, 80
rayon laminate, 11
reduced time
calculation in examples, 267, 272–274, 277–278, 286–287
derivation, 262–266
intrinsic or pseudo-time, 266
relation between creep and relaxation properties
frequency dependence, 124
Laplace transform, 71
time dependence, 67–72
Riemann–Lebesque Theorem, 132
Riemann–Stieltjes integral, 61
scaling, 17; Problem 1.2, 25
isochrones, 19–22
tests for scaling, 18–19
use in developing general linear constitutive
equation, 59, 60
shift function, 253
polysobutylene, 254
polymethyl methacrylate, 255
sinusoidal strain histories, 115
complex modulus, 118
low and high frequency limits, 131, 132
mechanical analogs, 125–130
complex viscosity, 125
dynamics of a rigid body, 223
stress history, 116, 117
three-dimensional response (see Constitutive
equation, three-dimensional response)
sinusoidal strain histories, qualitative features
linear elastic solid, 3
linear viscous fluid, 5
viscoelastic response, 9
sinusoidal stress histories, 120
complex compliance, 122
low and high frequency limits, 125–130
mechanical analogs, 125–130
strain history, 121
three-dimensional response (see Constitutive
equation, three-dimensional response)
slowly applied histories, 77, 80
solid-like response, 7, 8, 9, 68
complex moduli, low and high frequency limits, 132, 133
spectra, relaxation and creep, 51, 52
standard linear solid (see Three-parameter solid)
step strain response
general linear material, 59
Kelvin–Voigt model, 37
linear elastic solid, 3–4
linear viscous fluid, 4–5
Maxwell model, 32
N Maxwell elements in parallel, 48
three-parameter solid, 42
viscoelastic response, 7
step stress response
Kelvin–Voigt model, 38
linear elastic solid, 3–4
linear viscous fluid, 3–4
Maxwell model, 33
N Kelvin–Voigt elements in series, 50
N Maxwell elements in parallel, 49
three-parameter solid, 33
viscoelastic response, 7
Stieltjes convolution, 305
algebra, 305–306
storage modulus, 125
stress relaxation function
general linear material, 59
in terms of complex modulus, 138, 139
Kelvin–Voigt model, 38
Maxwell model, 33
N Maxwell elements in parallel, 48
three-parameter solid, 42
time–temperature superposition, 251
stress relaxation response
Kelvin–Voigt model, 37
Maxwell model, 32
N Maxwell elements in parallel, 48
three-parameter solid, 42, 43
stress–strain plot
contant strain rate deformation, 89–92
and recovery, 97
constant stress rate load and unload, 109
INDEX 317

linear elastic response, 2
linear viscous fluid, 5
sinusoidal oscillations; Problem 6.16, 144
step strain and recovery history, 102–103
viscoelastic response, 9
structural analysis
correspondence principle, 185, 189
direct methods
bolt and tube example, 172
delayed contact example, 190
extrusion example, 199
traveling load example, 202
viscoelastic support example, 195
dynamics of a rigid body, 219
superposition, 19
two-step test, 20, 21, 24
temperature effects
influence on characteristic stress relaxation time, 256
influence on complex compliance, 258
influence on complex modulus, 258
influence on creep compliance, 257
influence on stress relaxation, 248–250
polyethylene, work and temperature increase, 260–262
poly(methyl methacrylate), 251
time–temperature superposition, 251
time-varying temperatures, 262
thermal expansion function, 247
thermal histories
constitutive equation for uniaxial response, 268
influence on stress relaxation, 262
thermal strain, 247
three bar structure examples, thermo-viscoelastic response formuation, 269
frozen-in deformation, 271–276
frozen-in forces, 276–285
frozen-in warping, 285–292
three-parameter solid, 40
arbitrary strain history, 44
arbitrary stress history, 45
characteristic times
appearance in complex moduli, 129
creep, 44
relation between times, 44
stress relaxation, 43
comments, 45
complex compliance, 129, 130
complex modulus, 129
constitutive relation
differential form, 41
integral form in terms of strain history, 45
integral form in terms of stress history, 45
creep compliance, 43
creep response, 43–44
initial (jump) conditions, 41
mechanical analog, 40
stress relaxation function, 42
stress relaxation response, 42
structural examples
bolt and tube example, 172
delayed contact example, 190
forced oscillations, 225
free oscillations, 229
three bar structure, 269–271, 271–272, 276, 278, 280, 284
traveling load example, 202
viscoelastic support example, 195
time–temperature superposition
amorphous polymers, 253
definition, 251
experimental support, 253
torsion of circular bars, 207–212
moment–angle of twist relation, 211
moment–stress relation, 212
sinusoidal oscillations, temperature increase in polyethylene, 260–262
transformation of coordinate axes
strain transformation, 156
stress transformation, 156
viscoelastic response, qualitative features
creep, 7, 8
fluid-like response, 8, 9
solid-like response, 8, 9
stress relaxation, 9
Volterra integral equation
bolt and tube example, 174
delayed contact example, 195
free oscillations, 229
methods of solution
Laplace transform, 301
numerical methods, 302
successive approximations, 300
relating creep compliance and stress relaxation function, 68
three bar structure examples, 279, 282, 290–291
viscoelastic support example, 197
volumetric strain, 158
WLF equation, 256
work
general linear material
constant strain rate deformation and recovery, 98–100
general deformation history, 140–142;
Problem 6.22, 147
influence of temperature, sinusoidal histories, 259
sinusoidal stress or strain histories, 124;
Problem 6.5, 142
step strain and recovery, 102, 103
linear elastic solid, 3
linear viscous fluid, 5
polyethylene, temperature increase during work, 260–262