The Geometry of Ecological Interactions:
Simplifying Spatial Complexity

The concept of invasion fitness, defined as the initial per capita growth rate of a rare mutant in the environment set by the resident types, lies at the heart of adaptive dynamics theory. Current research seeks to provide techniques for determining measures of invasion fitness in different ecological settings. These measures are well established for populations without spatial structure. However, for spatially heterogeneous populations, the patterns that typically arise from short-range ecological interactions often decisively influence invasion fitness. This first volume of the Cambridge Studies in Adaptive Dynamics provides systematic introductions to the modern tools available for describing ecological and evolutionary change in spatially structured populations.

ULF DIECKMANN is Project Coordinator of the Adaptive Dynamics Network at the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria.

RICHARD LAW is Reader in Biology at the University of York.

JOHAN A.J. METZ is Professor of Mathematical Biology at the Institute of Evolutionary and Ecological Sciences at the University of Leiden, and Project Leader of the Adaptive Dynamics Network at IIASA.
Cambridge Studies in Adaptive Dynamics

Series Editors

ULF DIECKMANN
Adaptive Dynamics Network
International Institute for Applied Systems Analysis
A-2361 Laxenburg
Austria

JOHAN A.J. METZ
Institute of Evolutionary and Ecological Sciences
Leiden University
NL-2311 GP Leiden
The Netherlands

The modern synthesis of the first half of the twentieth century reconciled Darwinian selection with Mendelian genetics. However, it failed to incorporate ecology and hence did not develop into a predictive theory of long-term evolution. It was only in the 1970s that evolutionary game theory allowed the consequences of frequency-dependent ecological interactions to be analyzed. Adaptive Dynamics extends evolutionary game theory by describing the dynamics of adaptive trait substitutions and by analyzing the evolutionary implications of complex ecological settings.

The Cambridge Studies in Adaptive Dynamics highlight these novel concepts and techniques for ecological and evolutionary research. The series is designed to help graduate students and researchers to use the new methods for their own studies. Volumes in the series provide coverage of both empirical observations and theoretical insights, offering natural points of departure for various groups of readers. If you would like to contribute a book to the series, please contact Cambridge University Press or the series editors.

1. *The Geometry of Ecological Interactions: Simplifying Spatial Complexity*
 Edited by Ulf Dieckmann, Richard Law, and Johan A.J. Metz
 In preparation:

2. *The Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management*
 Edited by Ulf Dieckmann, Johan A.J. Metz, Maurice Sabelli, and Karl Sigmund

3. *Elements of Adaptive Dynamics*
 Edited by Ulf Dieckmann and Johan A.J. Metz
The Geometry of Ecological Interactions:
Simplifying Spatial Complexity

Edited by
Ulf Dieckmann, Richard Law, and Johan A.J. Metz
Contents

Contributing Authors

1 Introduction
Richard Law, Ulf Dieckmann, and Johan A.J. Metz

A Empirical and Statistical Background:
A Plant Ecological Perspective

2 A Neighborhood View of Interactions among Individual Plants
Peter Stoll and Jacob Weiner
2.1 Introduction .. 11
2.2 Competition Mechanisms 12
2.3 Moving from the Population to the Individual Level 18
2.4 What is a Plant’s Neighborhood? 19
2.5 Challenges for a Neighborhood Perspective of
Plant Interactions ... 24
2.6 Suggestions for Modelers 26

3 Spatial Interactions among Grassland Plant Populations
Jonathan Silvertown and J. Bastow Wilson
3.1 Introduction ... 28
3.2 Methods for Measuring Competition in the Field 29
3.3 Results of Field Experiments 32
3.4 Competition Matrices 38
3.5 Community Consequences of Spatial Interactions 42
3.6 Concluding Comments 46

4 Spatio-temporal Patterns in Grassland Communities
Tomáš Herben, Heinjo J. During, and Richard Law
4.1 Introduction .. 48
4.2 Spatio-temporal Patterns in Plant Communities 48
4.3 Externally versus Internally Generated Spatial Patterns .. 52
4.4 Concepts in Spatio-temporal Processes in
Plant Communities ... 54
4.5 Ergodic and Non-ergodic Communities 60
4.6 Concluding Comments 64
viii

5 Statistical Modeling and Analysis of Spatial Patterns 65
 David R. Cox, Valerie Isham, and Paul Northrop
 5.1 Introduction ... 65
 5.2 Descriptive Analysis 66
 5.3 Stochastic Models 70
 5.4 Model Fitting .. 80
 5.5 Concluding Comments 88

8 When the Mean-field Approximation Breaks Down 89

6 Grid-based Models as Tools for Ecological Research 94
 Christian Wissel
 6.1 Introduction ... 94
 6.2 Grid-based Simulation Models 95
 6.3 Spread and Control of Rabies 97
 6.4 Dynamics of a Dwarf Shrub Community 104
 6.5 A Generic Forest Fire Model 109
 6.6 Concluding Comments 114

7 Coexistence of Replicators in Prebiotic Evolution 116
 Tamás Czárán and Éörs Szathmáry
 7.1 Introduction ... 116
 7.2 Metabolic Replication: A Cellular Automaton Model .. 119
 7.3 The Phenomenology of Coexistence 123
 7.4 Spatial Pattern and the “Advantage of the Rare” Effect .. 127
 7.5 Resistance to Parasites and the Evolution of Community Size 129
 7.6 Toward a Dynamical Theory of Surface Metabolism ... 133

8 Games on Grids 135
 Martin A. Nowak and Karl Sigmund
 8.1 Introduction ... 135
 8.2 One-round Games 137
 8.3 Repeated Games 145
 8.4 Extensions and Related Work 149
 8.5 Concluding Comments 150
9 The Interplay between Reaction and Diffusion
Mikael B. Cronhjort
9.1 Introduction ... 151
9.2 The Models: Cellular Automata versus Partial Differential Equations 153
9.3 Spiral and Scroll Ring Patterns 159
9.4 Cluster Dynamics 163
9.5 Concluding Comments 169

10 Spirals and Spots: Novel Evolutionary Phenomena through Spatial Self-structuring
Maarten C. Boerlijst
10.1 Introduction .. 171
10.2 A Spatial Hypercycle Model 173
10.3 Spirals and Spots 174
10.4 Local versus Global Extinction 175
10.5 Resistance to Parasites 178
10.6 Concluding Comments 180

11 The Role of Space in Reducing Predator–Prey Cycles
Vincent A.A. Jansen and André M. de Roos
11.1 Introduction .. 183
11.2 Individual-based Predator–Prey Models 184
11.3 A Deterministic Model of Two Coupled Local Populations 187
11.4 Larger Spatial Domains 193
11.5 The Spatial Rosenzweig–MacArthur Model 196
11.6 Concluding Comments 199
11.7 Stability Analysis of a Multi-patch System 200

C Simplifying Spatial Complexity: Examples

12 Spatial Scales and Low-dimensional Deterministic Dynamics
Howard B. Wilson and Matthew J. Keeling
12.1 Introduction .. 209
12.2 Two Models from Evolutionary Ecology 210
12.3 Identifying Spatial Scales 213
12.4 Dynamics, Determinism, and Dimensionality 219
12.5 Concluding Comments 225
12.A Singular Value Decomposition 225
13 Lattice Models and Pair Approximation in Ecology

Yoh Iwasa

13.1 Introduction ... 227
13.2 Plants Reproducing by Seed and Clonal Growth 228
13.3 Forest Gaps ... 236
13.4 Colicin-producing and Colicin-sensitive Bacteria 243
13.5 Limitations, Extensions, and Further Applications ... 247

14 Moment Approximations of Individual-based Models

Richard Law and Ulf Dieckmann

14.1 Introduction ... 252
14.2 Spatial Patterns and Spatial Moments 253
14.3 Extracting the Ecological Signal from Stochastic Realizations ... 256
14.4 Qualitative Dependencies in a Spatial Logistic Equation . 261
14.5 Exploration of Parameter Space 267
14.6 Concluding Comments 269

15 Evolutionary Dynamics in Spatial Host–Parasite Systems

Matthew J. Keeling

15.1 Introduction ... 271
15.2 Dynamics of the Spatial Host–Parasite Model 272
15.3 A Difference Equation for the Dynamics of Local Configurations ... 279
15.4 Evolution to Critical Transmissibility 282
15.5 Concluding Comments 288
15.6 A Mathematical Specification of the PATCH Model 289

16 Foci, Small and Large: A Specific Class of Biological Invasion

Jan-Carel Zadoks

16.1 Introduction ... 292
16.2 Epidemic Orders ... 293
16.3 A Theory of Foci ... 298
16.4 Generalizations ... 312
16.5 Concluding Comments 315
16.6 Quantitative Applications of Models for Spatial Population Expansion (by Johan A.J. Metz) 315
17 Wave Patterns in Spatial Games and the Evolution of Cooperation 318
Régis Ferrière and Richard E. Michod
17.1 Introduction .. 318
17.2 Invasion in Time- and Space-continuous Games 319
17.3 Invasion of Tit For Tat in Games with Time-limited Memory ... 323
17.4 Invasion of Tit For Tat in Games with Space-limited Memory ... 329
17.5 Concluding Comments ... 332

D Simplifying Spatial Complexity: Techniques 337
18 Pair Approximations for Lattice-based Ecological Models 341
Kazunori Satō and Yoh Iwasa
18.1 Introduction .. 341
18.2 Pair Approximation ... 344
18.3 Improved Pair Approximation 349
18.4 Improved Pair Approximation with Variable Discounting . 355
18.5 Concluding Comments ... 357

19 Pair Approximations for Different Spatial Geometries 359
Marius van Baalen
19.1 Introduction .. 359
19.2 The Dynamics of Pair Events 364
19.3 Average Event Rates ... 368
19.4 Pair Approximations for Special Geometries 372
19.5 Pair Approximations versus Explicit Simulations 379
19.6 Invasion Dynamics ... 382
19.7 Concluding Comments ... 385

20 Moment Methods for Ecological Processes in Continuous Space 388
Benjamin M. Bolker, Stephen W. Pacala, and Simon A. Levin
20.1 Introduction .. 388
20.2 Moment Methods ... 389
20.3 A Spatial Logistic Model ... 391
20.4 A Spatial Competition Model 400
20.5 Extensions and Related Work 403
20.6 Concluding Comments ... 405
20.A Mean Equation 406
20.B Covariance Equation 408
20.C Analyzing the One-species System 409
20.D Analyzing the Two-species System 410

21 Relaxation Projections and the Method of Moments 412
Ulf Dieckmann and Richard Law
21.1 Introduction 412
21.2 Individual-based Dynamics in Continuous Space 418
21.3 Dynamics of Correlation Densities 425
21.4 Moment Closures and their Performance 438
21.5 Further Developments and Extensions 447
21.A Derivation of Pair Dynamics 452

22 Methods for Reaction–Diffusion Models 456
Vivian Hutson and Glenn T. Vickers
22.1 Introduction 456
22.2 Continuous Models 459
22.3 Linearized Stability and the Turing Bifurcation 466
22.4 Comparison Methods 471
22.5 Traveling Waves 475
22.6 The Evolution of Diffusion 479
22.7 Concluding Comments 481

23 The Dynamics of Invasion Waves 482
Johan A.J. Metz, Denis Mollison, and Frank van den Bosch
23.1 Introduction 482
23.2 Relative Scales of the Process Components 483
23.3 Independent Spread in Homogeneous Space:
 A Natural Gauging Point 485
23.4 Complications 497
23.5 The Link with Reaction–Diffusion Models 504
23.6 Dispersal on Reaction–Diffusion Models 507
23.7 Concluding Comments 512

24 Epilogue 513
Johan A.J. Metz, Ulf Dieckmann, and Richard Law

References 517

Index 553
Contributing Authors

Maarten C. Boerlijst (boerlijst@bio.uva.nl) Population Biology Section, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 320, NL-1098 SM Amsterdam, The Netherlands

Benjamin M. Bolker (ben@eno.princeton.edu) Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003, USA

David R. Cox (david.cox@nuffield.oxford.ac.uk) Nuffield College, Oxford OX1 1NF, United Kingdom

Mikael B. Cronholm (btc@eki.kth.se) Theoretical Biophysics, Department of Physics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Tamás Csátrán (tcsar@huders.elte.hu) Research Group in Theoretical Biology and Ecology, Department of Plant Taxonomy and Ecology, Eötvös University, Ludovika ter 2, H-1083 Budapest, Hungary

André M. de Roos (arroos@bio.uva.nl) Population Biology Section, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 320, NL-1098 SM Amsterdam, The Netherlands

Ulf Dieckmann (dieckman@iasi.ac.at) Adaptive Dynamics Network, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

Heinjo J. During (J.J.During@boev.biol.ruu.nl) Section of Vegetation Ecology, Department of Plant Ecology and Evolutionary Biology, University of Utrecht, P.O. Box 800.84, NL-3508 TB Utrecht, The Netherlands

Régis Ferrière (Regis.Ferriere@svl.jussieu.fr) Laboratoire d’Écologie, École Normale Supérieure, CNRS-UMR 7625, 46, rue d’Ulm, F-75230 Paris Cedex 05, France & Adaptive Dynamics Network, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

Tomáš Herben (herben@site.cas.cz) Institute of Botany, CZ-252 43 Pruhonice, Czech Republic

Wian Hutson (V.Hutson@sheffield.ac.uk) Department of Applied Mathematics, University of Sheffield, The Hicks Building, Sheffield S3 7RH, United Kingdom

Valerie Isham (valerie@stats.ucl.ac.uk) Department of Statistics Science, University College London, Gower Street, London WC1E 6BT, United Kingdom

Yoh Iwasa (yiwasscb@nbox.nc.kyushu-u.ac.jp) Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan

Vincent A.A. Jansen (vincent@einstein.zoo.ox.ac.uk) NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom. Present address: Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom

Matthew J. Keeling (matt@zoo.cam.ac.uk) Zoology Department, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom

Richard Law (RL1@york.ac.uk) Department of Biology, University of York, York YO10 5YW, United Kingdom

Simon A. Levin (simon@eno.Princeton.edu) Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003, USA
Contributing Authors

Johan A. J. Metz (metz@rulsfb.leidenuniv.nl) Section Theoretical Evolutionary Biology, Institute of Evolutionary and Ecological Sciences (EEW), Leiden University, Kaiserstraat 63, NL-2311 GP Leiden, The Netherlands & Adaptive Dynamics Network, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

Richard E. Michod (michod@u.arizona.edu) Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA

Denis Mollison (denis@ma.hw.ac.uk) Department of Actuarial Mathematics and Statistics, Heriot Watt University, Edinburgh EH14 4AS, United Kingdom

Paul Norbury (paul@stats.ucl.ac.uk) Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, United Kingdom

Martin A. Nowak (nowak@ias.edu) Program in Theoretical Biology, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA

Stephen W. Pacala (steve@eno.princeton.edu) Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1003, USA

Kazunori Satô (sato@sys.eng.shizuoka.ac.jp) Department of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

Karl Sigmund (ksigmund@esi.ac.at) Institute for Mathematics, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria & Adaptive Dynamics Network, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

Jonathan Silvertown (j.silvertown@open.ac.uk) Ecology and Conservation Research Group, Department of Biology, The Open University, Milton Keynes MK7 6AA, United Kingdom

Peter Stoll (stoll@sgi.unibe.ch) Institute of Geobotany, University of Berne, Altenbergrain 21, CH-3013 Berne, Switzerland

Eörs Szathmáry (szathmary@zeus.colbud.hu) Department of Plant Taxonomy and Ecology, Eötvös University, Ludovika ter 2, H-1083 Budapest, Hungary & Collegium Budapest, Institute for Advanced Study, Szemharomsag utca 2, H-1014 Budapest, Hungary

Minus van Baalen (mvaalen@svv.jussieu.fr) Institut d’Écologie, CNRS-FR3, Université Pierre et Marie Curie, Bâtiment A, 7ème étage, 7, quai St.-Bénezet, F-75252 Paris Cedex 05, France

Frank van den Bosch (frank.vandenbosch@ziw.wk.wau.nl) Department of Mathematics, Wageningen Agricultural University, Dreijenlaan 4, NL-6703 HA Wageningen, The Netherlands

Gillan T. Vickers (g.vickers@sheffield.ac.uk) Department of Applied Mathematics, University of Sheffield, The Hicks Building, Sheffield S3 7RH, United Kingdom

Jacob Weiner (jawej5@staff.kvl.dk) Botany Section, Department of Ecology, Royal Veterinary and Agricultural University, Rolighedsvej 21, DK-1958 Frederiksberg, Denmark

Howard B. Wilson (h.b.wilson@ic.ac.uk) Biology Department, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom

J. Bastow Wilson (Bastow@Otoga.ac.NZ) Botany Department, University of Otago, P.O. Box 56, Dunedin, New Zealand

Christian Wissel (wissel@pinus.oesa.ufz.de) Department of Ecological Modelling, Center for Environmental Research Leipzig-Halle, PF2, D-04301 Leipzig, Germany

Jan-Carel Zadoks (JCZadoks@User.DiVa.NL) Department of Phytopathology, Wageningen Agricultural University, P.O. Box 8025, NL-6700 EE Wageningen, The Netherlands