Conservation Biology

This beautifully illustrated textbook introduces students to conservation biology, the science of preserving biodiversity. Conservation biology is fast emerging as a major new discipline, which incorporates biological principles in the design of effective strategies for the sustainable management of populations, species and entire ecosystems. This book begins by taking the reader on a tour of the many and varied ecosystems of our planet, providing a setting in which to explore the factors that have led to the alarming loss of biodiversity that we now see. In particular, the fundamental problems of habitat loss and fragmentation, habitat disturbance and the non-sustainable exploitation of species in both aquatic and terrestrial ecosystems are explored. The methods that have been developed to address these problems, from the most traditional forms of conservation, creation of protected areas and single-species programmes, to new approaches at genetic to landscape scales are then discussed, showing how the science can be put into practice.

Andrew S. Pullin is a Senior Lecturer in the School of Biosciences at the University of Birmingham, where he has been teaching Environmental Biology, Ecology and Conservation Biology for a number of years. His research interests include the ecology and conservation of invertebrates, the assessment of biodiversity at species and genetic levels, and the relationship between conservation science and practice. His work has taken him to many exotic locations, including the tropics and the Arctic, where he has obtained first-hand experience of a wide range of conservation problems. In addition to his academic work, he is also involved in the practical aspects of conservation, and serves on the council of several non-governmental conservation organisations. He is involved in the implementation of several species and habitat action plans, placing him in an excellent position to consider the relationship between conservation problems, conservation science and conservation action. Andrew is the Editor of Ecology and Conservation of Butterflies (1995) and the Journal of Insect Conservation.
Conservation Biology

Andrew S. Pullin
To George and his generation
Contents

Preface xi

Part 1

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>The natural world</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>What have we got to lose?</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Diversity among living organisms</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Patterns of biodiversity</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>The utility of the natural world</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>The wild experience</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2 | Major world ecosystems | 19 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The ecosystem concept</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Terrestrial environments</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Montane environments</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Aquatic environments</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

Part 2

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>The human impact</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>The rise of human populations</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Current human impacts</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>The human impact on species extinctions</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Effects of habitat destruction</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Patterns of habitat destruction</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Biotic effects of habitat fragmentation</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Contraction in species range</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Effects of habitat disturbance</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Chemical pollution</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Introduction of exotic species</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Introduction of disease</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6 \ Non-sustainable use

What is sustainable use? 124
Overexploitation of wild populations 124
Impact of overexploitation of non-living resources 135
Summary 136

Part 3

Chapter 7 \ The rise of conservation biology

Introduction 141
Early conservationists 142
The emergence of conservation biology as a science 144
The Rio Summit and Biodiversity Convention 147
Conservation biology and the conservation movement 148
Summary 148

Chapter 8 \ Selecting protected areas

Introduction 150
What is a protected area? 151
History of protected area designation 153
Criteria for measuring conservation value of areas 156
Practical approaches to protected area designation 164
Summary 171

Chapter 9 \ Design and management of protected areas

Designing protected areas 173
Managing protected areas 176
Management of semi-natural communities 178
Monitoring change in protected areas 193
Summary 197

Chapter 10 \ Protecting species. I. In situ conservation

Commonness and rarity among species 199
Assessing and categorising threat to species from human activity 200
Managing small populations 207
Measuring species decline 210
Genetic management of small populations 212
Genetic management of species 216
Sustainable harvesting of populations 222
Summary 226
Chapter 11 Protecting species. II. Ex situ conservation and reintroduction
What is ex situ conservation and when is it necessary? 227
Ex situ conservation of plants 228
Ex situ conservation of animals: captive breeding 230
Species reintroduction 234
Direct species translocation 244
Population reinforcement 246
Overview 249
Summary 251

Chapter 12 Landscape scale conservation
Patchiness in the landscape 252
Landscape ecology and conservation 253
Enhancing species movement in the landscape 256
Conservation in the urban landscape 261
Conserving ecosystem function 264
Ecosystem management 265
Management at the landscape scale: the UK Natural Areas concept 266
Summary 268

Chapter 13 Conserving the evolutionary process (a longer-term view of conservation)
Short-term crisis conservation 270
Conservation and the control of nature 271
The use of phylogeography in conservation 272
Using genetics to plan at evolutionary and biogeographical scales 275
Linking genetic diversity with community diversity 279
The use of systematics in conservation 281
Conserving the evolutionary process 282
Summary 283

Chapter 14 Ecological restoration
Introduction 284
Elements of practical restoration 288
Case studies in restoration 291
Where should restoration take place? 297
Agri-environment schemes 298
Habitat creation 299
The good and the bad of ecological restoration as conservation practice 302
Summary 303

Chapter 15 Putting the science in to practice
Introduction 305
The contrasting positions of the practitioner and the scientist 306
CONTENTS

- Evidence-based conservation: lessons from medicine and public health 308
- Formulation of action plans: an opportunity to bridge the gap 312
- Models for combining science and practice 320
- Taking action 323
- Summary 327

References 329
Index 341
Preface

At the time of writing I have just spent the last 24 hours or so celebrating the coming of the year 2001, the real new Millennium. Having to stay at home looking after my young son and therefore being unable to go out to any parties this year, I watched the New Year celebrations take place around the globe beamed by satellite to my TV set. One overpowering message that came to me, and I know to many others, is how closely connected we have now become and how much smaller the Earth feels as a result. Now more than ever before, it should be obvious to all just how limited the earth’s resources are and how crowded the planet is becoming. We need to manage these resources very skilfully if we are to prosper as a species.

This book is intended as an introduction to the science of conservation biology: a science that I believe will become one of the most important to us in the twenty-first century. It seeks to provide the information about our natural world that will enable the sustainable management of genes, species and communities and to maintain the biodiversity that characterises the richness of our planet. We have a significant challenge on our hands, but we must face it head-on and develop our knowledge rapidly to give us the tools to do the job.

The text is written primarily as an aid to undergraduate-level teaching, supporting either short courses or modules in conservation biology within broader degree programmes. It is written with the presumption that readers have a fundamental knowledge of basic biology and some ecology. The book is based on the course in conservation biology that I taught first at Keele University and lately at The University of Birmingham, UK. One of the key motives for writing this text was that in teaching conservation biology I was frustrated by the lack of a text that reflected European as well as North American conservation issues. Europe is more crowded and has a longer history of human occupation than most of the rest of the world and most of its ecosystems have been fundamentally altered and degraded for millennia. Other continents may be able to learn by our mistakes. This book has a global perspective but includes many examples from Europe that may be indicators of problems to come elsewhere.

The content of the book is deliberately confined to the science of conservation biology and the mechanisms by which the science can influence practical actions. There is no attempt to cover wider conservation issues involving politics, economics and social sciences. In my view these subjects are often covered inadequately in conservation biology texts and I did not want to repeat the mistakes. There are a number of textbooks dedicated to these aspects of conservation and some are listed as further reading.

I have separated the text into three basic sections. The first two chapters introduce biodiversity and the characteristic ecosystems of the planet. These chapters may be too basic for some who will want to skip
over them, but I find that many students need this basic information to fully appreciate more complex conservation issues. The second section (Chapters 3–6) explores the factors that have led to problems in conservation and threats to biodiversity: loss and fragmentation of habitats, habitat disturbance and non-sustainable exploitation of species. The final section (Chapters 7–15) explores the development of conservation biology, the conservation actions that have been taken and those that might be considered in the future. Early chapters in this section cover the most traditional forms of conservation, formation of protected areas and single species programmes and later chapters move on to developing aspects of the science, exploring both strengths and weaknesses in our knowledge that underpins conservation strategies.

I am very grateful to my undergraduates for giving me feedback on earlier drafts of the manuscript and for spotting minor mistakes. My thanks go to Ward Cooper, Barnaby Willetts, Jayne Aldhouse and Shana Coates at Cambridge University Press for encouragement and advice and to many others who have provided me with information and allowed me to present their data. My greatest debt goes to my partner Teri Knight for her unceasing support and expert comments on the manuscript.

Andrew S. Pullin
Birmingham
1st January 2001

The publisher has used its best endeavours to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate.