Contents

Preface
Preface

Acknowledgments
Acknowledgments

1 Mathematical Background

1. Notation
1.1 Notation
1.2 Stress
1.3 Strain
1.4 Mechanical Principles
1.5 Elasticity
1.6 Plasticity
1.7 Viscoplasticity
1.8 Elastoplasticity
1.9 Elastoviscoplasticity
1.10 Friction

2 Introduction to the Finite-Element Method

2.1 Comparison of Finite-Difference and Finite-Element Methods with Analytical Solutions
2.2 Spatial Discretization
2.3 Shape Functions
2.4 Stiffness Matrix
2.5 Assembly of the Stiffness Matrix

3 Finite Elements for Large Deformation

3.1 Isoparametric Elements
3.2 Numerical Integration
3.3 Solution of Linear Finite-Element Systems
3.4 Numerical Solution of Nonlinear Finite-Element Systems
3.5 Finite-Element Formulation of a Boundary-Value Problem
3.6 A Simple Example of Finite-Element Calculation

4 Typical Finite Elements

4.1 Two-Dimensional Elements
4.2 Axisymmetric Elements

© in this web service Cambridge University Press
www.cambridge.org
CONTENTS

4.3 Three-Dimensional Elements 86
4.4 Application to Linear Elasticity 92
4.5 The Time-Dependent Heat Problem 94

5 Classification of Finite-Element Formulations 103
5.1 Implicit and Explicit Formulations 105
5.2 Rigid-Plastic or Elastoplastic Approximation 110
5.3 Incremental, Rate, and Flow Formulations 111
5.4 Lagrangian Versus Eulerian Schemes 116
5.5 Mixed Methods 120
5.6 Material Integration Schemes 125

6 Auxiliary Equations: Contact, Friction, and Incompressibility 132
6.1 The Contact Problem 132
6.2 Friction 138
6.3 Incompressibility 141

7 Thermomechanical Principles 152
7.1 The Elementary Heat Equations 153
7.2 Thermodynamic Principles for Continuous Media 158
7.3 Thermoelasticity 164
7.4 Elastoviscoplasticity and Elastoplasticity 167
7.5 Thermomechanical Coupling 170

8 Sheet-Metal Formability Tests 177
8.1 Tensile Test 177
8.2 The Plane-Strain Tension Test 192
8.3 In-Plane Forming Limits 198

9 Steady-State Forming Problems 205
9.1 Slab Analysis Versus the Finite-Element Solution 206
9.2 Rolling 208
9.3 Extrusion 223
9.4 Drawing 225

10 Forging Analysis 233
10.1 Non-Finite-Element Results 234
10.2 2-D Finite-Element Results 243
10.3 Finite-Element Axisymmetrical Results 255
10.4 Nonisothermal Effects 270
10.5 Three-Dimensional Finite-Element Computation of Complex Parts 278
10.6 Elastoplastic and Elastoviscoplastic Analysis 280

11 Sheet-Forming Analysis 286
11.1 Overview 287
11.2 Elements Used in SHEET-S and SHEET-3 291
11.3 Mesh Normal Formulation 297
11.4 Equilibrium Equation 302
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5 Contact and Friction: General Considerations</td>
<td>304</td>
</tr>
<tr>
<td>11.6 Consistent Full Set Algorithm</td>
<td>307</td>
</tr>
<tr>
<td>11.7 Numerical Solution Procedure</td>
<td>315</td>
</tr>
<tr>
<td>11.8 Example Simulations</td>
<td>322</td>
</tr>
<tr>
<td>11.9 Performance of SHEET-3 in International Benchmark Tests</td>
<td>329</td>
</tr>
<tr>
<td>12 Recent Research Topics</td>
<td>341</td>
</tr>
<tr>
<td>12.1 Meshing and Remeshing</td>
<td>341</td>
</tr>
<tr>
<td>12.2 Error Estimation</td>
<td>348</td>
</tr>
<tr>
<td>12.3 Adaptive Remeshing</td>
<td>352</td>
</tr>
<tr>
<td>12.4 Application to Orthogonal Machining</td>
<td>356</td>
</tr>
<tr>
<td>12.5 Advanced Solution Methods</td>
<td>360</td>
</tr>
</tbody>
</table>

Index

367