Index

A

acceleration, 4
adaptive remeshing, 352, 355–6
adiabatic, 180, 184, 187
Alart, P., 132
ALE method, 120
Altan, T., 241
alternate coupling, 222
Amonton's law, 15
Anisotropy, 11
Annealing, 219
arbitrary Lagrange-Euler method, 120
assembly
 of the load vector, 70
 of the stiffness matrix, 41–4, 70
associated flow rule, 110
ASTM E-8, 182
automatic remeshing, 342
Avitzur (velocity field), 237
Avitzur, B., 239, 240
axisymmetric extrusion, 225, 227f
axisymmetry, 84–6
 with torsion, 85
Ayres, R. A., 180, 194

B

back pressure, 225
Backofen, W. A., 198
balanced biaxial tension, 197, 198
banded, 42
bandwidth, 42, 57, 302
barycentric smoothing, 346
basis functions, 27
Bathe, K. J., 105, 133
Baudon, A. J., 133
Bay, F., 105
Becker, J. R., 241
Belytschko, T., 105
benchmark tests
 OSU, 329, 330
 VDL, 332, 333
best-fit friction coefficient, 332
biaxial stress state, 186, 188
Bihatier, C., 116
Binder, 337
Bolting, 264
Boulger, F. W., 241
boundary conditions,
 adiabatic, 184
 heat capacity, 157
 isothermal, 184
Boyce, D. E., 133
Bramley, A. N., 240
Brandt, A., 362
Braudel, H.-J., 240
Brazier, W. G., 194
bubble shape function, 142
bulging, 197
bulk modulus, 9

C

CAD/CAM, 299, 329, 333
Cartesian orthogonal unit vectors, 2
Cauchy deformation tensor, 5
CFS method, 132, 307–15, 332
Chan, K. S., 200
Chenot, J.-L., 1, 22, 105, 116, 118, 124,
 132, 139, 141, 158, 168, 183, 187,
 188, 210, 234, 235, 287, 293, 348,
 357, 363
chip formation, 360
Cholesky decomposition, 60–2
Choudry, S., 109
Chung, K., 177, 179, 185, 292, 302, 319
circle grid, 193
Claussius-Duhem equation, 161
Claussius-Duhem inequality, 160, 161, 162
Claussius-Duhem relation, 161
closed-die forging, 233
closest approach, 305
cold forging, definition, 233
cold rolling, 207, 220–3
cold rolling, definition, 208
combined forward-backward extrusion, 261–4, 267–9f
complex part, forging of, 251, 264–70
compliance tensor, 8
conduction law, 154
conjugate gradient method, 361
connectivity (element), 24
Considere, A., 185
consistency, viscoplastic, 171
consistent, 25
consistent full set method, 305, 307–15, 332
constant strain triangular membrane element, 292–6
constants
bulk modulus, 9
Lame coefficients, 8
Poisson coefficient, 8
Young modulus, 8
constitutive equation, 9, 103
Norton-Hoff, 13
Perzyna-like, 169
temperature dependence, 171, 180
constraint equation, 305
contact, 132, 304–7
and friction algorithms, 304
checking, 318
condition, 288, 297
condition, direct nodal, 304
elements, 132
enforcement, methods compared, 313–15
error, 309, 310, 314
ever-slipping condition, 307
friction, 77
incremental, 135
Lagrange multiplier, 137
nodal, 136
node, 298
normal direction, 297
penalty method, 137
pressure, 306
tangential direction, 297
velocity formulation, 133–5
continuity
C-one, 27, 31, 37
C-zero, 27, 31
contravariant components, 90
coupled base vectors, 294
coupling
alternate, 222
exact, 222
strong, 222
weak, 222
courant condition, 109
covariant base vectors, 294
covariant components, 90
Cray-YMP, 333
Croux method, 360, 361
cubic interpolation, 31
D
daehn, G. S., 188
damping, 289
dawson, P. R., 133
deep drawing, 111, 308
defor mation, 4
gradient, 4
rate of, 4, 6
defor mation heating, 179–85
degrees of freedom, 44, 65, 287
local, 44
delauney, 342
delauney method, 355
delauney tessellation, 343
delauney triangulation, 25, 344
demau, Y., 363
density scaling, 109
deviatoric stress tensor, 10, 110
diagonal matrix, 108
dichotomic stress tensor, 10

tensile, 188–92
differential equation, 127
divergence operator, 122
DNP, 307, 313, 332
draw-in boundary condition	hree dimensions, 321–2
two dimensions, 320
drawing, 225
ductility
dermal effect on, 188–92
tensile, 188–92
Dupont scheme, 95, 173
DYNA 3-D, 329
dynamic, 287
dynamic explicit, 288–9
dynamic processes, 105
E
effective strain, Hill, 12
effective stress, 10
effusivity coefficients, 217
eggert, G. M., 133
Einstein’s summation convention, 2
elasticity
elastic constant tensor, 8
elastic rod, 67
elastic rod solution, 38–9
elastic-plastic, 290
elastic-plastic analysis, 290
elastoplastic, 8, 103, 110
elastoplasticity, 14, 167–70
elastoviscoplasticity, 15, 167–70
electrochemical etching, 193
elementary heat equations, 153–7
elastoplastic, 8, 103, 110
elastoplasticity, 14, 167–70
elastoviscoplasticity, 15, 167–70
elastic-plastic, 290
elastic-plastic analysis, 290
element stiffness matrix, 41
element subdomain, 27
four-node quadrilateral, 82–3
four-node tetrahedron, 86
isoparametric, 47
line, 24
lumping, 98
membrane, 77, 88
membrane triangular, 292–6
one-dimensional, 24
one-dimensional isoparametric, 48
plane-strain line, 291–2
quadratic nine-node quadrilateral, 83, 84f
SHEET-3, 291–6
SHEET-S, 291–6
shell elements, 289–90
six-node quadratic triangular, 80
ten-node quadratic tetrahedral, 87
thin-shell, 91
three-dimensional mini, 87
three-node triangular, 78
triangle, 25
two-dimensional, 25
two-dimensional mini, 79
emissivity, 157
effect size, 186
energy conjugate variables, 166
energy conservation, 158–9
internal energy, 158
kinetic energy, 158
energy method, 39
entropy, 160, 161
equilibrium, static, 7
equivalent strain, 117
equivalent stress, 10
error estimation, 78, 348–52
elastic, 348–51
local, 353–4
viscoplastic, 352
estimated refinement mesh, 358
Eulerian description, 118–20, 216
Eulerian formulation, 103, 118–20, 206
ever-slipping condition, 307
exact coupling, 222
explicit, 287
form of the flow rule, 113
formulations, 103, 105–7, 108–10, 173
integration scheme, 126
external forces, 297
external work, 158
extrinsic inhomogeneity, 199
extrusion, 205, 223–5, 235
axisymmetric, 225, 227f
backward, 239–40, 261, 263–6f
backward-backward, 240
combined, 240
forward, 237–9, 260–1, 261–3f
forward-backward, 240
failure elongation, 190
Felgeres, L., 235
finite difference method (FDM), 18, 19
finite element analysis (FEA)
see also finite element method
dynamic explicit, 288–9
static explicit, 288
static implicit, 287
finite element formulations
explicit, 103, 105–7, 108–10
implicit, 103, 105–7
finite element method (FEM)
see also finite element analysis
Chapter 2, 17–46
references, 17
thermomechanical, 172
vs. finite-difference method, 20
vs. slab method, 207–8
finite volume method, 109
flat rolling, 209f
flat rolling, definition, 208
FLD, 198, 199, 200, 201, 203
statistical effects, 201–3
flow chart, 244
flow formulation, 103, 110, 111, 114–15
flow theory, 9, 206
force
body, 7
dynamic, 7
gravity, 7
inertial, 7
internal, 7
static, 7
forging
2-D finite element results, 243–55
3-axle, 279
3-D, 284–5
3-D complex parts, 278
automotive part, 280
axisymmetric, 255
forging (cont.)
Cardan joint, 280, 281f
Chapter 10, 233–85
closed-die, 233
cold, 233, 284–5
discrete formulation, 282
elastoplastic, 280–5
elastovisoplastic, 280–5
free, 233
gear, 280, 281f
hot, 233
limitations, 233–4
of a complex part, 251, 264–70
open-die, 233
plane-strain, 254, 255
warm, 233
formability test, 177
forming limit curve, 193
forming limit diagram, 193, 198–203
forming of a bolt, 270–2f
formulation
dynamic explicit, 288–9
mesh-normal, 297–302
SHEET-3, 302–3
SHEET-S, 302–3
static explicit, 288
static implicit, 287
Fortin, A., 243
Fortin, M., 243
four-node quadrilateral element, 142
Fourment, L., 132
fractional norm, 317
fracture, 198
free energy, 161
free forging, 233
free mesh, 202
free node, 304
free surface, 118
friction, 15, 138–40, 297, 304–7
coefficient, 15, 331
Coulomb (Amonton), 15
force, 15
Norton-type, 140
regularization, 306
sticking, 15
stress, 16
temperature dependence, 171
Tresca (sticking), 16
friction coefficient, 15, 331
best-fit, 332
front tension, 225
functional
mixed problem, 122
Norton-Hoff, 13
functionals
elastoplastic, 8
isotropic elastic, 9
rigid plastic, 8
viscoplastic, 8
functions
ever-slipping condition, 307
quadratic one-dimensional shape, 83
G
Galerkin approach, 120
Galerkin formulation, 69, 217
Galerkin method, 66, 67, 69, 95, 121
Galerkin-like, 214
Gaussian
Elimination, 70
integration scheme, 55, 83
method, 58, 349
one-point integration formula, 69
generalized Delauney tessellation method,
342
geometric defects, 187, 189
Germain, Y., 292, 302, 319
Ghosh, S., 188
global displacement vector, 104
global least-squares smoothing, 350
global numbering, 24
global shape functions, 32–3, 36
global stiffness matrix, 40, 302
Goodwin, G. M., 198
gradient operator, 122
grain orientation, 201
Gratacos, P., 205
gravitational force, 8
Green's deformation tensor, 293
Green's theorem, 95
H
Hadj, M. El, 363
half-bandwidth, 57
Hallquist, J.-O., 105
hardening, integration of, 77
Hartley, P., 240
heat
boundary conditions, 157
conduction law, 154–5
definition, 153
steady state, 157
heat capacity, 94, 95
heat capacity matrix, 122
lumped, 97
heat conductivity matrix, 95
heat equation
boundary conditions, 172
dilatation coupling, 170
elasto-plastic coupling, 171
for plastic or viscoplastic materials, 169–70
plastic coupling, 171
viscoplastic coupling, 171
heat flux, 18, 95, 153def, 159
heat flux condition, 275
heat source, 94
Hecker, S. S., 193
Heege, A., 132
hemispherical punch stretching, 330, 331
high-strain rate, 105
Hill, 199
1948 planar anisotropic yield function, 335
1948 theory, 327
1979 theory, 327
1979 yield function, 336
anisotropy parameter, 332
M value, 194
new parameter, 331
new yield theory, 296, 316
nonquadratic theory, 197
old theory, 195, 327
quadratic yield function, 196
Hill, R., 11, 198, 235
Hogge, M. A., 95
Hollomon, 185
Hollomon hardening law, 316, 335
hood inner panel, section analysis, 322–4
Hooke’s law, 8, 9, 92, 112, 165, 319, 348
Hosford yield function, 296, 316
hot forging, definition, 233
hot rolling, definition, 208
finite element solution, 208
slab solution, 208
hourglassing, 290
Hu, X., 188
Huang, G. C., 352
hydrostatic pressure, 230f
I
impenetrability, 304
implicit, 287
formulations, 103, 105–7
integration scheme, 126
scheme, 113
in-plane stretching test, 177
in-plane tension, 286
incompressibility, 79, 132, 141–50
Lagrange multiplier method, 141
Lagrange multiplier with mini-element, 142–3
mixed method, 124–5
non-steady state, 147–50
nonstationary processes, 147–50
penalty method, 144–7
steady state, 141
incremental formulation, 111–16
indentation, 249
of a square block, 253
index, 2
dummy, 2
free, 2
inertial forces, 107, 288
initial defect, 199
instability, 198
integral form, 29
integration
exact, 53
explicit schemes, 126
Gaussian method, 53
hardening law, 77
implicit schemes, 126
numerical, triangular elements, 81
points, 55
scheme, 115
trapezoidal schemes, 126
weighting factors, 53
internal energy, 158, 161
internal node, 24
internal state variables, 163–4
internal work, 7, 158
intrinsic inhomogeneity, 199
invariance property, 179
invariant, 10
inverse, 52
isoparametric elements, 47–52
reference element, 53
two-noded, 68
isothermal, 184, 187
isotropic hardening, 10
isotropic material, 8
iteration number, 313
iterative solvers, 288
J
Jacobian, 5, 347
matrix, 5, 52
transformation, 5
Jauman derivative, 111, 170
Jauman stress rate, 14
Jones, R. E., 132
K
Keeler, S. P., 198, 200
Keeler-Goodwin diagram, 198
Keum, Y. T., 118, 297, 299, 322
Kim, J. H., 291
Kim, Y. H., 118, 181, 183, 184
kinematic energy, 105
kinetic energy, 105, 158
Knibloe, J. R., 330
Kobayashi, S., 291
Koistinen, D. P., 291
Kronecker delta, 2, 90
Kronecker symbol, 165
Kuczinski, K., 198, 199
L
Lagrange multiplier, 132, 138, 139, 141–3, 305
Lagrangian formulation, 4, 103, 116–18
updated, 205
Lagrangian method, 117
total, 117
updated, 117
Lame coefficients, 8, 165
Lame elastic parameters, 171
Laplacian, 157
large strain, 103
Lavarenne, B., 235
LDH Test, 325
Lee, J. K., 329
limit strains, 202
Limiting Dome Height Test, 325
Lin, M. R., 180, 182, 183, 184
line search, 63, 317
linear finite-element systems, 56
linear systems
banded, 58
Liszka, T., 350
local coordinates, 47
local error estimation, 353–4
local numbering, 24, 28
local refinement factor, 354–5
local shape function, 29
local space, 47
local stiffness matrix, 41
local tool surface (lts), 312
localized heating, 200
localized necking, 198, 199
locking, 92
loose metal, 337
loss of contact, 249
lumped mass matrix, 95, 108, 288
lumping, 108

M
m value, 199
M-K analysis, 199, 203
M-K method, 200
M-K model, 198
MacCauley bracket, 137
Makino, A., 333
Marciniak and Kuczinski (M-K), 199
Marciniak, Z., 198, 199
mass matrix, 106, 108
mass multiplication, 289
mass scaling, 109
material, isotropic, 8
material behavior
strain-rate sensitivity, 185, 186
work-hardening, 185
material coordinates, 89
material density, 94
material derivative, 94, 118
material integration schemes, 125–8
material reference system, 90
matrix, 2
banded, 42
bandwidth, 42
definition, 2
determinant, 2, 3
displacement gradient, 5
element stiffness, 41
heat capacity, 122
identity, 2
Jacobi, 5, 52
local stiffness, 41
multiplication, 2
stiffness, 41
trace, 2
transpose, 2
mechanical energy, 39
membrane, 90
memory variables, 347
mesh, 25
consistent, 25
mesh normal, 297, 298, 299, 302, 308, 311
mesh-normal formulation, 297–302
meshing, 341–8
metric tensors, 294
minimal residual method, 361
minor strain, 199
mixed methods, 103, 120–5
functional formulation, 122–4
Galerkin formulation, 121–2
incompressibility, 124–5
incompressible flow, 124
Mocellin, K., 132
Monte Carlo method, 201, 203
multigrid method, 362–5
n value, 199
N-CFS, 337
N-CFS method, 308, 310–13, 313–14, 316
Nagtegaal, J. C., 105, 287
Nakamachi, E., 299, 329, 333
Narasimhan, K., 200, 202
neck, 188
necking, 192
Newton, 7
Newton method, 315
Newton’s law of motion, 7, 288
Newton-Raphson, 210, 212, 287, 304, 315,
360, 361
Newton-Raphson iteration, 73–4
Newton-Raphson method, 72, 114, 173, 182,
244, 283
Newtonian behavior, 142
Newtonian flow, 143
nodal acceleration, 106
nodal approach, 132
nodal coordinates, 28
nodal displacement vector, 104
node-by-node calculation, 288
nodes, 19, 24
nonlinear elastic rod, 72
nonlinear elastic theory, 317
nonlinear finite-element equations, 72
normal anisotropy, 12
normality, Hill, 12
normality condition, 10
normalized material density, 191
Norton viscoplastic potential, 168
Norton-Hoff, 127, 145
constitutive equation, 13
functional, 13
viscoplastic, 171
notch, 199
numerical integration, 52–6
NUMISHEET ’93, 335, 336, 337

O

objectivity, 14
Ohio State University formability test, 324, 325, 326
Onate, E., 333
one-point Gaussian integration formula, 69
open-die forging, 233
operator
divergence operator, 122
gradient operator, 122
Orkisz method, 350
Orkisz, J., 350
orthogonal machining, 356, 358, 359
Osman, F. H., 240
OSU benchmark test, 329
Owen, D. R. J., 133

P

Pantuso, D., 133
Papadapoulos, P., 132
parallel computing, 362
partial differential equation, 29
Passman, R., 287
penalty approach, 289
penalty coefficient, 146
penalty formulation, 132
permutation operator, 2
Perzyna, 15
Perzyna, P., 169
Petrov Galerkin method, 217
piecewise linear interpolation, 21
Pillinger, I., 240
plane strain, 194–7, 198, 330
plane-strain compression test, 235
plane-strain forging, 254, 255
plane-strain line element, 291–2
plane-strain tension tests, 256–9
plane-strain test, 177, 192–7
plane-strain upsetting, 246
plastic or viscoplastic materials
heat equation for, 169–70
plasticity
anisotropy parameter, 11
associated flow, 10
convexity, 10
flow theory, 9
Hill, 11
isotropic hardening, 10
normal anisotropy, 12
normality, 10
orthotropic symmetry parameter, 11
time independent, 10
viscoplasticity, 10
von Mises, 10
yield function, 10
Poisson coefficient, 8
polynomial decomposition, 7
polynomials, 27
positions
blank-holder, 320
drawbead, 320
predictor-corrector, 288
pressure, hydrostatic, 4
quadratic interpolation, 29
quadratic yield function, 11
quasi-elastic unloading, 319
quasi-static equilibrium, 288
quasi-static loading, 286
quasi-static problems, 105

R

Raghavan, K. S., 182, 187
rate formulation, 111
rate sensitivity index, 171
Rebelo, N., 287
recrystallization, 219
reduced integration, 92, 278
reference element, 55–6
cube (2-D), 55
square (1-D), 55
tetrahedron (3-D), 55
reference space, 47
regularization, 110
friction, 306
regularized Tresca law, 140
relative error indicator, 330
remeshing, 78, 283–4, 341–8
adaptive, 352, 355–6
automatic, 342
residual force, 317
residual stresses, 111
residual vector, computation of, 72–4
right stretch tensor, 7
rigid plasticity, unloading problem, 319–20
rigid plastic, 110, 290–1
rigid-plastic analysis, 290
rigid-plastic approach, 111
rigid-plastic materials, 103
rigid viscoplastic, 110, 291
rolling flow formulation, 210
rotation, rigid body, 6
rotational operator, 7

S
Sajewski, V. F., 194
Salencon, J., 235
Samuelson, Å., 206
Saran, M. J., 133, 286, 297, 307, 322
Saunders, F. I., 324
Scaling
density, 109
mass, 109
velocity, 109
Schweizerhof, K., 105
section analysis of hood inner panel, 322–4
Sekhon, G. S., 357
shape functions, 27, 28, 104
global, 27, 39
linear, 33–7
local, 27, 29
piecewise linear, 39
quadratic, 29
shape rolling, 209def, 223
sheet forming, Chapter 11, 285–340
sheet metal formability tests, Chapter 8, 177–204
sheet metal forming, 177
sheet rolling, 111, 206, 209f, 220
sheet tensile tests, 184f, 187
SHEET-3, 287, 293, 297, 304, 305, 308, 337
SHEET-3 elements, 291–6
SHEET-S, 287, 297, 304, 305, 308, 314, 331
SHEET-S elements, 291–6
shell elements, 289–90
simulation, 8-R (arbitrary punch), 314
skyline storage, 360
slab analysis, 207
slab method, 206, 207, 241–3
slab rolling, 209f
slip, 306
slip line field method, 234–5
slipping node, 305
smoothed fields, 350
Solberg, J. M., 132
solid elements, 290
solution
elastic rod, 38–9
linear, 56
solution methods
Cholesky decomposition, 60–2
conjugate gradient, 361

Crout algorithm, 361
direct, 361
Gaussian, 58
iterative, 361
minimal residual, 361
multigrid, 362–5
numerical, 62–3
speed-up, 289
springback, 111, 290
state functions, 161
state variables, 161
static, 287
static equilibrium, 8
static explicit, 288
static implicit, 287, 291, 338
steady state, Chapter 9, 205–32
steady state, heat capacity, 157
steady-state flow, 141
Stefan constant, 157
stick, 306
sticking condition, 307
stiffness matrix, 22, 37–41, 296
computation of, 72–4
linear, 56
strain, 5
effective, 12
infinitesimal, 6
large, 5
rate, 4, 6
strain hardening, 178, 219–20, 251
strain localization, 200
strain rate, 4, 6
strain-hardening exponent, 188
strain-rate sensitivity, 178, 185, 186
strain-rate sensitivity index, 188, 248
stress, 2
Cauchy, 2
decomposition, 4
deviatoric, 10
deviatoric part, 4
effective, 10
equivalent, 10
hydrostatic, 4
invariant, 3
principal, 3
regularized, 14
spherical part, 4
symmetric, 2
yield, 10
stress tensor, 90
stretch ratios, 7
strip rolling, 223f
strong coupling, 222
structured meshing, 341–2
Sturgess, C., 240
subdomains, 342
subincrementation, 63, 128
subtetrahedrals, 278
surface contact conditions, 289
INDEX 375

T

tangent vector, 306
tangential unit vectors, 306
tapers, 188
taylor expansion, 19, 63, 219, 350
taylor, l. m., 105, 287
taylor, r. l., 133
ten-node tetrahedron, 278
tensile ductility, 187, 189
tensile elongation, 184f
tensile specimen geometry, 182
tensile test, 177–92
effect of inertia, 188–92
tension test, 259f
tension test, finite element analysis, 255–60
tensor, 2
Cauchy deformation, 5
compliance, 8
definition, 2
deforamation, 5
elastic, 8
large strain, 5
raised to a power, 7
rate of deformation, 4, 6
small strain, 6
spatial gradient of velocity, 6
spin, 6
strain rate, 6
velocity gradient, 6
tests
formability, 177
in-plane stretching, 177
plane-strain, 177, 192–7
plane-strain tension, 194–7
sheet metal, 177, Chapter 8
sheet metal formability, 177, Chapter 8
tensile, 177–92
tetrahedral elements, 278
thermal conductivity, 18, 94, 155
thermal coupling, 118, 216
part, 275–7
tools, 275–7
thermal gradients, 187, 189
thermal localization, 273
thermal problems
convection form, 64
Galerkin formulation, 94–5
radiation, 64
stationary heat equation, 64
thermodynamics, 158–64
first law, 158–9, 180
second law, 159–61
thermoelasticity, 164–6
thermomechanical coupling, 170–3, 270–3
finite element method, 172
Thompson, E., 206
Thompson, E. G., 206
time derivative, 118
temperature, 172
time integration, 95, 103, 115
tool normal, 297, 302
total elongation, 186
tractions, 3
trajectories of material points, 119
trapezoidal rule, 115
Tresca friction law, 16, 140, 226, 237, 242
trial solution, 287, 288, 317
triangulation, 25, 36, 343
Deluyn, 25
Tsay, C. S., 105
tube rolling, 216f
turbine blade, 241
two-noded isoparametric elements, 68
U
UBET, 240–1
uniaxial tension, 198
unilateral contact, 304
update, 317
updated Lagrangian method, 287, 293, 346
upper bound elemental technique, 240–1
upper bound method, 236
upsetting, 236
of a rectangular block, 248–9
V
variational principles, 8, 22
VDI benchmark test, 332, 333
vector, 1
Cartesian, 1
components, 1
definition, 1
displacement, 4
global displacement, 104
nodal displacement, 104
orthogonal, 1
unit, 1
vectors
convected base, 294
covariant base, 294
velocity, 4, 103
material, 4
velocity formulation, 115–16
velocity scaling, 109
virtual displacement field, 7
virtual work principle, 114, 139, 172
Galerkin method, 67
viscoplastic, 8, 13
viscoplastic approach, 111
viscoplastic consistency, 171
viscoplastic friction, 212
viscoplastic potential law, 14
Voce hardening law, 316
volume conservation, 148

© in this web service Cambridge University Press www.cambridge.org
von Mises, 242
von Mises criterion, 110
von Mises flow, 11
von Mises yield function, 10, 185

W
Wang, C.-T., 297, 322
Wang, N. M., 192, 194, 291
Wang, S. P., 109
warm forging, 233
weak coupling, 222
weak sense, 117
weighting factor, 346
Wertheimer, T. B., 109
wire drawing, 226

Wood, R. D., 206, 287
work conjugate, 4
work hardening, 185, 226
work hardening coefficient, 186
Wriggers, P., 133

Y
yield stress, 10
Young modulus, 8
Yu, S., 206

Z
Z-CFS method, 307, 310, 313–14
Zavarise, G., 133
zero extension direction, 199
Zhu, J. Z., 349, 352
Ziegler, H., 167
Zienkiewicz, O. C., 206, 287, 349, 352