
CHAPTER ONE

Mathematical Background

This book assumes a background in the fundamentals of solid mechanics and the
mechanical behavior of materials, including elasticity, plasticity, and friction. A pre-
vious book by the same authors1 covers these topics in detail, including derivation
or explanation of the most important concepts. It is beyond the scope of the current
book to reproduce all of this important information.

In this chapter, the essential equations from this background are reproduced. This
serves two purposes: to introduce the notation that will be used throughout the re-
maining chapters, and to list the principal background equations in one place. Fre-
quent reference to the equations presented in this chapter will be made. However, it
should be kept in mind that the full context for these equations is found in Funda-
mentals of Metal Forming.1

1.1 Notation

There are many alternate forms of notation used in solid mechanics and finite-element
modeling. In some cases, it is clearer to use a form that has become a de facto standard
in the area, even though such usage might not be rigorous. In other cases, there is no
consensus on notation, so it is less confusing to be consistent with other equations.

In general, scalars are denoted by plain Roman or Greek letters, with or without
subscripts or superscripts: a, A, α, t, T, a1, a12, . . . .

Vectors (whether physical or numerical ones, which are generalized one-
dimensional arrays of numbers) are typically represented by lower-case or upper-case
bold letters to emphasize the vector nature of the variable, with alternate notations
used to refer to the components of the vector:

a = a1ê1 + a2ê2 + a3ê3 = |a|ĝ ↔ a1, a2, a3 ↔

a1

a2

a3


 = [ai ] = [a] ↔ ai , (1.1)

where ê1, ê2, ê3, are the Cartesian orthogonal unit vectors, |a| is the norm of vector a,
and ĝ is the unit vector with direction a. The symbol ↔ is used here in order to treat the
differences in the forms rigorously. However, this convention will often be dropped
and the various forms of such a quantity will be used interchangeably, depending on
convenience and clarity.

1 R. H. Wagoner and J.-L. Chenot, Fundamentals of Metal Forming (Wiley, New York, 1997).
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2 MATHEMATICAL BACKGROUND

Notation for tensors of rank higher than 1 (“vector”) follows vector usage, al-
though an attempt will be made to use bold upper-case letters when there is not a
conventional usage of another symbol. Tensors are sometimes expressed in matrix
form to illustrate the required manipulation:

A ↔ [A] = [Ai j ] =

A11 A12 A13

A21 A22 A23

A31 A32 A33


↔ Ai j . (1.2)

Of course, the matrix shown above need not correspond to any tensor (such as A
shown at the left side of the chain). Several other common notations for matrices are
as follows:

AT ↔ [A]T: transpose of A,

A−1 ↔ [A]−1: inverse of A,
det(A) = det[A]: determinant of A,
trace(A) = trace[A]: trace of A,
C = AB ↔ [C] = [A][B]: matrix multiplication,
I ↔ [I]: identity matrix.

(1.3)

Each form can also be modified to show the subscript indices to emphasize the com-
ponents.

The indicial form of matrix equations makes use of standard rules. Any repeated
index within a term is a “dummy index,” following Einstein’s summation conven-
tion in which any repeated index is summed. Other indices are “free indices,” which
may independently adopt certain values. Two standard operators are used to complete
indicial equations.

One is the Kronecker delta, with the property that

δi j = 0 if i �= j,

δi j = 1 if i = j. (1.4)

The other is the permutation operator epsilon, with the property that

εi jk = 0 if i = j, or j = k, or k = i,
εi jk = 1 if i jk = 1, 2, 3, or 2, 3, 1 or 3, 1, 2,
εi jk = −1 if i jk = 3, 2, 1, or 1, 3, 2, or 2, 1, 3.

(1.5)

1.2 Stress

Throughout this book, reference to stress will always mean Cauchy stress, which
relates real force intensities on planes and areas defined in a current deformation
state. This standard stress measure is always symmetric by equilibrium considerations
applied to a continuum and thus may be written as follows:

σ ↔ [σ ] =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 . (1.6)
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1.2 STRESS 3

The actual tractions, or stress vector, may be obtained from the stress tensor as
follows:

T = σn ↔ [Ti ] =
∑
j

σi j n j ↔



T1

T2

T3


 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




n1

n2

n3


 . (1.7)

The force acting on an elementary surface can be calculated similarly by

df = σda ↔ d fi =
∑
j

σi jda j ↔




d f1
d f2
d f3


 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




da1

da2

da3


 , (1.8)

where da = |da|n is the elementary surface vector and n is the normal vector.
The principal stresses are obtained as the eigenvalues λ of σ in the usual way:

σn = λn ↔

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




n1

n2

n3


 =


λn1

λn2

λn3


 , (1.9)

or with indicial form:
σ11 − λ σ12 σ13

σ21 σ22 − λ σ23

σ31 σ32 σ33 − λ




n1

n2

n3


 = 0. (1.10)

This is solved by noting that the determinant of the tensor on the left-hand side
must be identically equal to zero (if n is not to be a null vector):

det(σ) = 0 ↔ det


σ11 − λ σ12 σ13

σ21 σ22 − λ σ23

σ31 σ32 σ33 − λ


 = 0, (1.11)

where the result of this calculation gives a cubic equation, with real roots λi corre-
sponding to the principal stresses (eigenvalues):

λ3 − J1λ
2 − J2λ− J3 = 0, (1.12)

where J1 is the first stress invariant,

J1 = trace(σ) = σ11 + σ22 + σ33, (1.13)

J2 is the second stress invariant (quadratic invariant),

J2 = −(σ11σ22 + σ22σ33 + σ33σ11) + σ 2
23 + σ 2

31 + σ 2
12, (1.14)

and J3 is the third stress invariant,

J3 = det(σ) =
∣∣∣∣∣∣
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

∣∣∣∣∣∣ . (1.15)

For the numerical formulation of elastoplastic constitutive equations, it is fre-
quently convenient to perform an additive decomposition of the stress tensor to obtain

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-64267-5 - Metal Forming Analysis
R. H. Wagoner and J.-L. Chenot
Excerpt
More information

http://www.cambridge.org/9780521642675
http://www.cambridge.org
http://www.cambridge.org


4 MATHEMATICAL BACKGROUND

the spherical or pressure part (which is insensitive to plastic deformation) and the de-
viatoric part. The hydrostatic pressure is taken to be:

p = −σp = −σ11 + σ22 + σ33

3
= − J1

3
, (1.16)

which allows further decomposition to obtain the deviatoric part:

σ = σpI + s = (−p)I + s, (1.17)

where s is the deviatoric stress tensor.

1.3 Strain

The work-conjugate (actually power-conjugate) quantity to the Cauchy stress is the
rate of deformation (D), which may be referred to without ambiguity as the strain rate
ε̇ (epsilon with overdot). In nearly every instance throughout this book, an updated
Lagrangian formulation will be used, in which the preceding and current steps are
considered sufficiently close that infinitesimal deformation theory may be used, such
that, for example, �ε = ε̇�t. Thus, there will be no distinction between power and
work formulations. With this in mind, a few important equations may be presented,
starting with the Lagrangian view of continuum deformation.

The coordinate vector is

x = χ(X, t), (1.18)

where each material point is labeled by its position X at some time t0, and its current
position at time t is given by x.

The material velocity is

v =
(
∂x
∂t

)
X
. (1.19)

The material acceleration is

γ =
(
∂v
∂t

)
X
. (1.20)

The displacement vector is

U(X, t) = x(X, t) − X. (1.21)

In the updated Lagrangian sense, X represents the position of a material point at the
previous time step, which is considered only infinitesimally removed from the current
position of the same material element, x.

The deformation gradient defines the transformation between corresponding ma-
terial vectors at the two instants,

dx = ∂x
∂X

dX = F dX, (1.22)

with the component form
dx1

dx2

dx3


=


F11 F12 F13

F21 F22 F23

F31 F32 F33




dX1

dX2

dX3


↔dxi =

∑
j

∂xi
∂Xj

dXj =
∑
j

Fi jdXj . (1.23)
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1.3 STRAIN 5

It may be shown that the determinant of F, also called the Jacobian of the trans-
formation, relates the initial differential volume dvol0 (or density ρ0) at a point with
the corresponding one dvol (or ρ) after deformation:

dvol
dvol0

= ρ

ρ0
= J = det(F). (1.24)

A similar transformation is written for the relative displacements of the head and tail
of such a vector:

du = ∂u
∂X

= J dX. (1.25)

With the indicial forms we have


du1

du2

du3


 =




∂u1

∂X1

∂u1

∂X2

∂u1

∂X3
∂u2

∂X1

∂u2

∂X2

∂u2

∂X3
∂u3

∂X1

∂u3

∂X2

∂u3

∂X3







dX1

dX2

dX3


 =


J11 J12 J13

J21 J22 J23

J31 J32 J33




dX1

dX2

dX3


 .

↔ dui =
∑
j

∂ui
∂Xj

dXj =
∑
j

Ji jdXj

(1.26)

J is called the displacement gradient matrix, or Jacobian matrix, which can be
written in terms of F with the help of Eq. (1.21):

J = F − I. (1.27)

In order to ignore pure rotations of a vector, the stretch of a material element is
considered, starting from F:

ds2 = dXTC dX, (1.28)

with

C = FTF, Ci j =
∑
k

∂xk
∂Xi

∂xk
∂Xj

, (1.29)

where ds is the final length of such an element or vector, and C is known as the
deformation tensor, or the Cauchy deformation tensor.

Whereas C transforms the length of a vector from one state to another, it is most
frequently of interest to focus on the change of length, in which case the strain tensor
E is used:

ds2 − dS2 = dXT(2E) dX. (1.30)

Taking into account Eq. (1.28), we get

E = 1
2

(C − I) = 1
2

(FTF − I), (1.31)

the components of which are

Ei j = 1
2

(∑
k

∂xk
∂Xi

∂xk
∂Xj

− δi j
)

, (1.32)
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6 MATHEMATICAL BACKGROUND

and with the help of Eq. (1.27) we can also write

E = 1
2

(J + JT + JTJ). (1.33)

The factor of 1/2 is used conventionally such that the infinitesimal strain components
(which are historically older) become the small limit of E.

For small deformation and rotation (i.e., where the components of J are much
less than one, and can be considered in the limit of approaching zero), it may be
seen that the last term of Eq. (1.33) is vanishingly small relative to the first term.
Elimination of the second-order term produces the definition of the small-strain
tensor:

ε = 1
2

(J + JT) or εi j = 1
2

(
∂ui
∂xj

+ ∂uj

∂xi

)
. (1.34)

The small strain is clearly the symmetric part of J, whereas the antisymmetric part
corresponds to the rigid-body rotation:

ω = 1
2

(J − JT) or ωi j = 1
2

(
∂ui
∂xj

∂uj

∂xi

)
. (1.35)

Although there is no formal distinction between infinitesimal displacements and
velocities (aside from a homogeneous factor of dt), conventional notation is often
based on rate or velocity forms. In this case, the relative velocity dv of the head to tail
of a vector dx is related to dx as follows2:

dv = L dx, (1.36)

where L is defined by

L = ∂v
∂x

, Li j = ∂vi
∂xj

, (1.37)

and L is the velocity gradient or the spatial gradient of velocity. L may be decomposed
additively, analogous to the decomposition of J (because L is simply J̇) for infinitesimal
differences between the start and end of deformation:

L = ε̇ + ω̇. (1.38)

Here ε̇, often denoted by D, is the strain rate, or rate of deformation tensor:

2ε̇ = L + LT, ε̇i j = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
, (1.39)

and ω̇ is the spin tensor:

2ω̇ = L − LT, ω̇i j = 1
2

(
∂vi
∂xj

− ∂vj
∂xi

)
. (1.40)

2 Note that the lower case has been used for dx, even though this is a material vector at the beginning of the
deformation step. Because the focus is on infinitesimal steps, the distinction between dx and dX is lost in
this context.
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1.4 MECHANICAL PRINCIPLES 7

For small strain, denoted here by �, the relationship between �ε and ε̇, or �ω
and ω̇, is thus:

�ε = ε̇�t, (1.41)

�ω = ω̇�t. (1.42)

It is sometimes useful to use relationships among the various deformation measures:

L = ḞF−1 or Ḟ = LF, (1.43)

E = 1
2

(FTF − I), Ei j = 1
2

(
∂xk
∂Xi

∂xk
∂XJ

− δi j
)
. (1.44)

It is also useful to perform a polar decomposition of the deformation gradient, as
follows:

F = RU, (1.45)

where R is orthogonal and called the rotational operator and where U is symmetric
positive definite and is called the right stretch tensor. R is often used to estimate the
rigid-body rotation of a large deformation, whereas U is used to find the stretch ratios
for a large deformation:

U2 = C = (2E + I), λi = Ui =
√
Ci =

√
2Ei + 1. (1.46)

Here λi is the ith stretch ratio corresponding to the ith principal value (eigenvalue)
of U. Note that raising a tensor to a power signifies a tensor with the same principal
directions but with principal values raised to that power.

1.4 Mechanical Principles

There are many alternate, but equivalent, ways to formulate the mechanical equations
governing continuum motion. The continuity equation states that mass cannot be lost
or gained, and it implies that velocity fields must be well behaved:

dρ
dt

+ ρdiv(v) = 0,
∂ρ

∂t
+ div(ρv) = 0. (1.47)

Similarly, Newton’s laws must be obeyed for each material element. Including dynamic
(inertial) and static effects internally, and gravity as an external body force, we can
write the equation of motion as

ργ = div(σ) + ρg. (1.48)

For the cases that dominate the examples in this book, only static equilibrium
need be considered, and gravity forces may be neglected as much smaller than other
forces:

div(σ) = 0. (1.49)

By considering a virtual displacement field δu (which is infinitesimal and has the
property that δu is zero wherever the displacement is specified), we can equate the
internal work absorbed by the deformation of the material to the external work done
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8 MATHEMATICAL BACKGROUND

by outside forces acting on the body:∫
∂�

Tdδu dS +
∫
�

ρgδu dV =
∫
�

ργδu dV +
∫
�

σδεdV,

external work increment = internal work increment (1.50)

where Td is defined on the whole boundary ∂� of �. It is equal to the external
stress vector where it is prescribed, and it is equal to zero elsewhere; δu is any virtual
displacement equal to zero on the part of ∂� where the displacement is imposed.

As before, if static equilibrium is sought and gravitational forces may be neglected
as second order, this reduces to∫

∂�

Tdδu dS =
∫
�

σδεdV.

external work increment = internal work increment (1.51)

Variational principles may be used to establish functional formulations whenever the
virtual work principle can be integrated exactly. Then, instead of solving for a root
of a function where the net force equals zero [e.g., the function can be the left-hand
side of Eq. (1.50) less the right-hand side of Eq. (1.51)], we seek the minimum of a
functional, generally homogeneous to the net work, or to the rate of work.

Although it is always possible to derive the virtual work statement from the func-
tional (by differentiation), the converse is not always possible. Where the variational
principle or functional exists, it ensures that the stiffness matrix is symmetric, which
has advantages for numerical solution. Thus, when such a principle can be written,
it is often useful to do so. Although there is no convenient elastoplastic functional,
both elastic and purely plastic or viscoplastic functionals can be derived. Examples of
such functionals are shown as follows, under the appropriate constitutive equations.

1.5 Elasticity

Hooke’s law may be written simply as follows:

σ = c : ε, or ε = S : σ. (1.52)

With the components notation it is also written as

σi j =
∑
k,l

ci jklεkl , or εi j =
∑
k,l

Si jklσkl , (1.53)

where c is known as the elastic constant tensor (often denoted by D) and S represents
the compliance tensor.

For an isotropic material, c and S take special forms ensuring that the material
has the same properties in every direction. The terms in c and S are often written in
terms of conventional elastic constants, as follows:

ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk), (1.54)

Si jkl = 1 + ν
E

δi jδkl − ν

E
(δikδ jl + δilδ jk), (1.55)

where the conventional elastic constants λ,µ are the Lamé coefficients, E is the Young
modulus, and ν is the Poisson coefficient.
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1.6 PLASTICITY 9

Using Eq. (1.54), we write Hooke’s equation in the usual form:

σ = λθ I + 2µε, (1.56)

where θ =∑
i
εi i is the dilatation. The component form is obviously

σi j = λθδi j + 2µεi j . (1.57)

If Eq. (1.56) is inverted, we get

ε = 3ν
E
pI + 1 + ν

E
σ (1.58)

or

εi j = 3ν
E
pδi j + 1 + ν

E
σi j . (1.59)

Other elastic constants are also used commonly and are related as follows:

µ = G = E
2(1 + ν) , (1.60)

λ = νE
(1 + ν)(1 + 2ν)

= 2µν
1 − 2ν

. (1.61)

For the bulk modulus,

B= λ+ 2
3
µ = E

3(1 − 2ν)
= κ, (1.62)

ν= λ

2(λ+ µ)
= 3B − 2µ

2(3B + µ)
, (1.63)

E= µ(3λ+ 2µ)
λ+ µ = 9µB

3B + µ. (1.64)

For this material constitutive equation (i.e., an isotropic, linearly elastic material), a
functional exists and may be written as follows:

�(ε) =
∫
�

(
1
2
λθ2 + µε : ε

)
dV −

∫
∂�

Tdu dS. (1.65)

Here Td is defined on the whole boundary ∂� of �. It is equal to the external
stress vector where it is prescribed, and it is equal to zero elsewhere; δu is any
virtual displacement equal to zero on the part of ∂� where the displacement is
imposed.

1.6 Plasticity

Unless otherwise stated, in this book we consider only flow theory plasticity laws,
which obey the following principles.

f (σ) < 0: no plastic deformation,

f (σ) = 0: plastic deformation is possible,

f (σ) > 0: is forbidden.
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10 MATHEMATICAL BACKGROUND

� f (σ) is a yield function with the following properties:
� There is no plastic deformation in the elastic (or rigid) region enclosing σ = 0,

which is defined by

f (σ) < 0, or
(
f (σ) = 0 and

∂ f
∂σ

: σ̇ < 0
)
. (1.66)

� The plastic region corresponds to

f (σ) = 0 and
∂ f
∂σ

: σ̇ ≥ 0. (1.67)

� The surface defined in the stress space by f (σ) = 0 is convex.
� The yield surface changes size but not shape (isotropic hardening).
� The normality condition (associated flow) holds for plastic loading:

ε̇ = λ̇p ∂ f
∂σ

, ε̇i j = λ̇p ∂ f
∂σi j

, λ̇p > 0, (1.68)

or

dε = dλp
∂ f
∂σ

, dεi j = dλp
∂ f
∂σi j

, dλp > 0. (1.69)

� Plastic flow is time independent (unless viscoplasticity is noted).

The von Mises yield function may be expressed in stress components as follows:

f (σ) = 1
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] − σ̄ 2
0

= 1
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6σ 2

12 + 6σ 2
23 + 6σ 2

31

]− σ̄ 2
0 .

(1.70)

If the deviatoric stress tensor s is used, we obtain the equivalent expression,

f (s) = 3
2

∑
i, j

s2
i j − σ̄ 2

0 , (1.71)

which is also

f (s) = J ′
2 − σ̄ 2

0 , (1.72)

where J ′
2 is the second invariant of the deviatoric stress tensor [see Eq. (1.14)] and

σ̄0 is the yield stress in tension. We also define σi and si as the principal values of the
stress tensor and deviatoric stress tensor, respectively.

It is convenient to define the effective stress (or equivalent stress) as the tensile
stress corresponding to any state of stress by means of a yield surface passing through
the state of stress:

σ̄ = f (σ). (1.73)

For the von Mises flow, the effective stress takes the usual form:

σ̄ =
{

1
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6σ 2

12 + 6σ 2
23 + 6σ 2

31

]}1/2

=
{

1
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]
}1/2

=
(

3
2

∑
i, j

s2
i j

)1/2

. (1.74)
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