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1

Introduction

The main subject of this book can be described as a study of various properties
of the distribution of integer powers gx of some integer g > 1 modulo a prime
number p with gcd(g, p) = 1. We are also interested in applications of such
results to various problems. In particular, we consider several well-known
problems from algebraic number theory, the theory of function fields over a
finite field, complexity theory, the theory of linear congruential pseudo-random
number generators, cryptography, and coding theory.

To describe more precisely the type of questions which we study in this
book and which arise in the aforementioned applications, let us denote by t the
multiplicative order modulo p of an integer g > 1 with gcd(g, p) = 1.

For (a, p) = 1, 1 ≤ N ≤ t , 0 ≤ M < p, 1 ≤ H ≤ p, we denote by
Ta(N , M, H) the number of solutions of

agx ≡ M + u (mod p), 1 ≤ x ≤ N , 1 ≤ u ≤ H.

Typically, the aforementioned problems lead to one of the following ques-
tions about the distribution of residues of an exponential function.

• What is the largest value of |Ta(N , M, H) − N H/p| over all a = 1, . . . ,

p − 1 and M = 0, . . . , p − 1?

• What are the restrictions on N and H , under which Ta(N , M, H) > 0 for
every M?

• For how many integers i , 0 ≤ i ≤ p/H − 1, is Ta(N , i H, H) > 0?

• What is the largest value of H (as a function of N ) for which
Ta(N , M, H) = 0 for some M?

• What is the smallest value of H (as a function of N ) for which
Ta(N , M, H) = N for some M?
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4 Preliminaries

These questions may be asked:

• for all a ∈ F∗
p;

• for some special a, say a = 1;
• for ‘almost all’ a ∈ F∗

p;
• for at least one ‘good’ a ∈ F∗

p;
and in several other cases.

Similar questions can be considered modulo composite numbers and, even
more generally, for finitely generated multiplicative groups of algebraic num-
ber fields which are reduced modulo an integer ideal of that field.

Looking at the subjects that interest us, it should not be a big surprise that
our main tool is various bounds for character sums. Thus we start this book
with a collection of known relevant bounds as well as several new ones. In
particular, we obtain new bounds of Gaussian sums. Indeed, it is easy to see
that many questions about the distribution of gx modulo p are equivalent to
similar questions about the distribution of the xn modulo p, where n = (p −
1)/t , and this leads to Gaussian sums. Certainly the last subject is of great
independent interest and we consider this topic as well. Then we present a
series of new results on the structure of multiplicative shifts of multiplicative
subgroups and arbitrary subsets of F∗

p. In subsequent chapters, we give a wide
spectrum of applications of these basic results.

As we have mentioned, studying the distribution of residues gx modulo p is
our central interest and is most important for the majority of our applications.
Nevertheless, in some cases we need to consider the more general situation
with finitely generated groups in algebraic number fields. This is why we
formulate our main results concerning bounds of exponential sums in terms
of such groups (even if the actual result is applicable only to the gx (mod p)).
The reader who is not interested in applications to algebraic number fields may
always assume that ‘integer ideal’ means ‘integer’, ‘prime ideal’ means ‘prime
number’, ‘algebraic number field K ’ means just ‘field of rationals Q’, finitely
generated groups have rational integer generators, and so on.

There are also some technical reasons to work in a more general setting for
arbitrary algebraic number fields. In fact, some of our results are proved (and
formulated, of course) for the basic case of gx (mod p). Nevertheless, we
believe they hold in the full generality. Obtaining such generalizations would
be very important for a number of applications. In particular, we believe that
in many of our statements, the words ‘let p be a prime ideal of first degree’
(which essentially refer to the distribution modulo p) can be simplified to just
‘let p be a prime ideal’. We should remark that, as far as we can see, such
generalizations will not be simple exercises but will require some new ideas.
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1 Introduction 5

In fact we hope that such new ideas could turn out to be useful for obtaining
further results about the distribution of gx modulo p as well.

Let K be an algebraic number field of degree n over the field of rational
numbers Q, and let ZK be its ring of integers. For an integer ideal q, we denote
by 
q the residue ring modulo q and by 
∗

q the multiplicative group of units
of this ring.

Given a finitely generated multiplicative group V of K

V = {λx1
1 . . . λxr

r : x1, . . . , xr ∈ Z},
we denote its reduction modulo q by Vq. We shall always suppose that the
generators λ1, . . . , λr are multiplicatively independent.

There are a great many results on the behavior of groups V in K [29, 30, 13].
Here we concentrate on their reductions Vq. In the simplest, but probably the
most important case, when K = Q and r = 1, this is a classical question about
the distribution of residues of an exponential function equivalent to considering
the quality of the linear congruential pseudo-random number generator [37, 67,
69]. We shall consider this and other applications which rely on results which
are not so widely known concerning the distribution of Vq in 
q.

As we have mentioned, in many situations it is enough to study the case
K = Q, r = 1 and moreover q = p is a rational prime number.

Such applications include but are not limited to:

• Egami’s question about smallest norm representatives of the residue classes
modulo q and Euclid’s algorithm [12, 79];

• Prediction of the 1/M-pseudo-random number generator of Blum, Blum,
and Shub [6] and the linear congruential generator [16];

• Girstmair’s problem about the relative class number of subfields of cyclo-
tomic fields [20, 21, 22] and Myerson’s problem about Gaussian
periods [62, 63];

• Kodama’s question about supersingular hyperelliptic curves [64, 68, 92, 93];
• Tompa’s question about lower bounds for the QuickSort algorithm using a

linear congruential pseudo-random number generator [36, 90];
• Lenstra’s constants modulo q and Győry’s arithmetical graphs [29, 30, 48,

49, 65, 70];
• Estimating the dimension of BCH codes [5, 54];
• Robinson’s question about small mth roots modulo p [75];
• Håstad, Lagarias, and Odlyzko’s question about the average value of small-

est elements in multiplicative translations of sets modulo p [31];
• Niederreiter’s problem about the multiplier of linear congruential pseudo-

random number generators [67, 69];
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6 Preliminaries

• Stechkin’s question about the constant in the estimate of Gaussian sums with
arbitrary denominators [86];

• Odlyzko and Stanley’s problem about 0, 1-solutions of a certain congruence
modulo p [71].

It is easy to extend the list of problems which are related to questions on the
distribution or residues of finitely generated groups. As an example, we note
papers [9, 23] where links to the weight distribution of arithmetic codes are
displayed.

Another example is paper [51] where some properties of finitely generated
groups were used to study certain algebraic questions. All these properties
(combinations of Artin’s conjecture and Tchebotarev’s density theorem) were
established (under the Extended Riemann Hypothesis, of course) in [60] which
was motivated by [51].

Many other problems about the minimal polynomials of Gaussian periods
(over rationals as well as over finite fields) are considered in [19, 24, 25, 26, 27,
28]. We also refer to [88, 89] for good expositions of various basic properties
of Gaussian periods and related questions. Perhaps the methods of the present
book can be applied to some of them. Indeed, in Chapter 10 we consider
the problem about the norm of Gaussian periods. A more general question of
computing their minimal polynomials is of great interest too (for details see
the papers above). It turns out that several higher coefficients can be expressed
in terms of the numbers R(k, t, p), k = 1, 2, . . . , of solutions of the equations

g1 + · · · + gk = 0, g1, . . . , gk ∈ Gt ,

(we follow the notation of Chapter 10). Thus using various bounds of
exponential sums, one can estimate (or even find an asymptotic formula for)
T (k, t, p) and then apply them to studying higher coefficients.

Of course any improvement of bounds of exponential sums used in this
book would entail further progress in this area. The same is true for any
improvement of Lemma 9.7.

Also, many questions about the distribution of residues of multiplicative
groups can be reformulated in the dual form as questions about the distribution
of indices and therefore bounds of multiplicative character sums, including the
celebrated Burgess estimate, can be used. For example, see the remarks made
in Chapter 15 and Chapter 7, and another example of using character sums in
this kind of question is given in [23].

Generally, we do not try to extract all possible results accessible by our
methods, nor do we try to get the best possible values of some (important)
constants. Rather, we attempt to demonstrate different approaches from
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1 Introduction 7

various areas of mathematics in one attack on certain problems. One of
the examples is Theorem 6.7 which is based on some delicate combinations
of tools from mathematical analysis, geometry of numbers, and algebraic
geometry. We pose several problems of different levels of difficulty. Some
of them can probably be solved within the framework of this book, others will
require some radically new ideas (although in general we try to avoid posing
hopeless problems). We would like to believe that this book will stimulate
further research in this very important and mathematically attractive area.

Finally, we stress that it would be interesting to consider similar questions
for some other groups, say for finitely generated matrix groups, for groups of
points on elliptic curves, or for finitely generated groups in function fields.
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2

Notation and Auxiliary Results

Here we collect some notation and useful facts which we use repeatedly
throughout this book.

We denote by log x the binary logarithm of x and by ln x the natural
logarithm of x .

Several of our estimates include iterations of logarithmic functions and do
not make any sense for some values of arguments. To save space and avoid
using expressions like log max{2, log max{2, k}}, we define

Log x = max{2, log x}, Ln x = max{2, ln x}.
For a complex z ∈ C, we denote by �z its real part.
For a prime number p and an integer a �= 0, we denote by ordp a the p-adic

order of a, that is the largest power of p which divides a.
For brevity, we set

e(z) = exp(2π i z).

As usual, π(x) denotes the number of prime numbers which do not exceed
x and π(x, k, l) denotes the number of primes which do not exceed x and are
congruent to l modulo k.

We also make use of the following estimates:

k − 1 ≥ ϕ(k) � k

Ln ln k
, ω(k) � ln k

Ln ln k
,

where ϕ(k) is the Euler function and ω(k) is the number of prime divisors of
integer k ≥ 2, and

τ(k) ≤ exp

(
(ln 2 + o(1))

ln k

ln ln k

)
, k → ∞,

where τ(k) is the number of integer positive divisors of k ≥ 2.
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2 Notation and Auxiliary Results 9

They easily follow from the Prime Number Theorem and can be found
in [74] and many other sources.

For an element ϑ of a ring R we define the multiplicative order of ϑ as the
smallest integer t > 0 for which ϑ t = 1, if such an integer exists, otherwise
the multiplicative order is undefined. It is easy to see that if R is a finite ring
and ϑ is not a zero divisor that the multiplicative order is always defined.

For an algebraic extension L of a field K, TrL/ K(α) and NmL/ K(α) denote
the trace and the norm of α ∈ L in K, respectively. That is,

TrL/ K(α) =
s∑

i=1

σi (α) and NmL/ K(α) =
s∏

i=1

σi (α),

where σi , i = 1, . . . , s, are distinct embeddings of L into the algebraic closure
of K, s = [L : K]. It is easy to verify that for a chain of extensions F ⊆ K ⊆ L

we have

TrL/ F(α) = TrL/ K

(
TrK/ F(α)

)
and

NmL/ F(α) = NmL/ K

(
NmK/ F(α)

)
.

Let K be an algebraic number field of degree n over the field of rational
numbers Q. We denote by ZK the ring of integers of K, that is the ring of
elements of K whose minimal polynomial over Q is monic.

For an integer ideal q, we denote by 
q the residue ring modulo q and
by 
∗

q the multiplicative group of units of this ring. It is well known that
|
q| = Nm(q) and actually this can be taken as a definition of Nm(q).

For any prime ideal p, Nm(p) = pd for some prime p and integer d, 1 ≤
d ≤ n, which is called the degree of p.

If p is a prime ideal of degree d then 
p � Fpd , a finite field of pd = Nm(p)

elements.
It is easy to see that p|p in ZK. The ideal p is called ramified if p2|p and

unramified otherwise.
If p is an unramified prime ideal of first degree then 
pk � Z/(pk) where

p = Nm(p).
We also have |
∗

q| = ϕ(q), where ϕ(q) is the Euler function in ZK, which
has properties very similar to these of the Euler function in Z. For example, it
is multiplicative and

ϕ(pr ) = Nm(p)r−1 (Nm(p) − 1)

for any prime ideal power pr .
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10 Preliminaries

The residue ring 
q has Nm(q) additive characters χ which are functions
χ : 
q → C such that

χ(z1 + z2) = χ(z1)χ(z2) and |χ(z)| = 1

for any z1, z2, z ∈ 
q. The character χ0 with χ0(z) = 1, z = 
q is called
trivial. Multiplicative characters are defined in a similar way with respect to
the group 
∗

q.
For a rational integer q the corresponding characters are of the form χa(z) =

e(az/q) for a = 0, . . . , q − 1. For a prime ideal p of norm Nm(p) = pd the
characters of 
p are of the form

χa(z) = e
(
TrK/ Q(az)/p

)
, a ∈ 
p.

In both cases a = 0 corresponds to the trivial character.
Finally we mention two our very frequently used tools. The first one is the

Cauchy inequality

N∑
i=1

Ai Bi ≤
(

N∑
i=1

Aα
i

)1/α (
N∑

i=1

Bβ
i

)1/β

which holds for any two sequences of positive numbers Ai , Bi , i = 1, . . . , N
and any positive α, β with α−1 + β−1 = 1.

The second one is the Hadamard inequality

|det A|2 ≤
N∏

i=1

N∑
j=1

|ai j |2

for the determinant of a matrix A = (
ai j

)N
i, j=1 with complex elements.
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Part two

Bounds of Character Sums
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