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1 The elementary properties
of groups

1.1 Definitions

All crystals and most molecules possess symmetry, which can be exploited to simplify the

discussion of their physical properties. Changes from one configuration to an indistinguish-

able configuration are brought about by sets of symmetry operators, which form particular

mathematical structures called groups. We thus commence our study of group theory with

some definitions and properties of groups of abstract elements. All such definitions and

properties then automatically apply to all sets that possess the properties of a group,

including symmetry groups.

Binary composition in a set of abstract elements {gi}, whatever its nature, is always

written as a multiplication and is usually referred to as ‘‘multiplication’’ whatever it

actually may be. For example, if gi and gj are operators then the product gi gj means

‘‘carry out the operation implied by gj and then that implied by gi.’’ If gi and gj are both

n-dimensional square matrices then gi gj is the matrix product of the two matrices gi and gj
evaluated using the usual row � column law of matrix multiplication. (The properties of

matrices that are made use of in this book are reviewed in Appendix A1.) Binary

composition is unique but is not necessarily commutative: gi gj may or may not be equal

to gj gi. In order for a set of abstract elements {gi} to be a G, the law of binary composition

must be defined and the set must possess the following four properties.

(i) Closure. For all gi, with gj 2 {gj},

gi gj ¼ gk 2 fgig, gk a unique element of fgig: (1)

Because gk is a unique element of {gi}, if each element of {gi} is multiplied from the left,

or from the right, by a particular element gj of {gi} then the set {gi} is regenerated with the

elements (in general) re-ordered. This result is called the rearrangement theorem

gj fgig ¼ fgig ¼ fgig gj: (2)

Note that {gi} means a set of elements of which gi is a typical member, but in no

particular order. The easiest way of keeping a record of the binary products of the

elements of a group is to set up a multiplication table in which the entry at the

intersection of the gith row and gjth column is the binary product gi gi¼ gk, as in

Table 1.1. It follows from the rearrangement theorem that each row and each column of

the multiplication table contains each element of G once and once only.
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(ii) Multiplication is associative. For all gi, gj, gk 2 {gi},

giðgj gkÞ ¼ ðgi gjÞgk : (3)

(iii) The set {gi} contains the identity element E, with the property

E gj ¼ gj E ¼ gj, 8 gj 2 fgig: (4)

(iv) Each element gi of {gi} has an inverse g�1
i 2 fggi such that

g�1
i gi ¼ gi g�1

i ¼ E, g�1
i 2 fgig, 8 gi 2 fgig: (5)

The number of elements g in G is called the order of the group. Thus

G ¼ fgig, i ¼ 1, 2, . . . , g: (6)

When this is necessary, the order of G will be displayed in parentheses G(g), as in G(4) to

indicate a group of order 4.

Exercise 1.1-1 With binary composition defined to be addition: (a) Does the set of

positive integers {p} form a group? (b) Do the positive integers p, including zero (0)

form a group? (c) Do the positive (p) and negative (�p) integers, including zero, form a

group? [Hint: Consider the properties (i)–(iv) above that must be satisfied for {gi} to form

a group.]

The multiplication of group elements is not necessarily commutative, but if

gi gj ¼ gj gi, 8 gi, gj 2 G (7)

then the group G is said to be Abelian. Two groups that have the same multiplication table

are said to be isomorphous. As we shall see, a number of other important properties of a

group follow from its multiplication table. Consequently these properties are the same for

isomorphous groups; generally it will be necessary to identify corresponding elements in

the two groups that are isomorphous, in order to make use of the isomorphous property. A

group G is finite if the number g of its elements is a finite number. Otherwise the group G is

infinite, if the number of elements is denumerable, or it is continuous. The group of

Exercise 1.1-1(c) is infinite. For finite groups, property (iv) is automatically fulfilled as

a consequence of the other three.

Table 1.1. Multiplication table for the group G¼ {gi} in which the product

gi gj happens to be gk.

G gi gj gk . . .

gi gi
2 gk gi gk

gj gj gi gj
2 gj gk

gk gk gi gk gj gk
2

.

.

.
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If the sequence gi, g2i , g3i , . . . starts to repeat itself at gcþ1
i ¼ gi, because g

c
i ¼ E, then

the set fgi g2i g3i . . . gci ¼ Eg, which is the period of gi, is a group called a cyclic group,

C. The order of the cyclic group C is c.

Exercise 1.1-2 (a) Show that cyclic groups are Abelian. (b) Show that for a finite

cyclic group the existence of the inverse of each element is guaranteed. (c) Show that

!¼ exp(�2pi=n) generates a cyclic group of order n, when binary composition is

defined to be the multiplication of complex numbers.

If every element of G can be expressed as a finite product of powers of the elements in a

particular subset of G, then the elements of this subset are called the group generators. The

choice of generators is not unique: generally, a minimal set is employed and the defining

relations like gi¼ (gj)
p (gk)

q, etc., where {gj gk} are group generators, are stated. For

example, cyclic groups are generated from just one element gi.

Example 1.1-1 A permutation group is a group in which the elements are permutation

operators. A permutation operatorP rearranges a set of indistinguishable objects. For example, if

Pfa b c . . .g ¼ fb a c . . .g (8)

then P is a particular permutation operator which interchanges the objects a and b. Since

{a b . . .} is a set of indistinguishable objects (for example, electrons), the final configura-

tion {b a c . . . } is indistinguishable from the initial configuration {a b c . . . } and P is a

particular kind of symmetry operator. The best way to evaluate products of permutation

operators is to write down the original configuration, thinking of the n indistinguishable

objects as allocated to n boxes, each of which contains a single object only. Then write

down in successive rows the results of the successive permutations, bearing in mind that a

permutation other than the identity involves the replacement of the contents of two or more

boxes. Thus, if P applied to the initial configuration means ‘‘interchange the contents of

boxes i and j’’ (which initially contain the objects i and j, respectively) then P applied to

some subsequent configuration means ‘‘interchange the contents of boxes i and j, whatever

they currently happen to be.’’ A number of examples are given in Table 1.2, and these

should suffice to show how the multiplication table in Table 1.3 is derived. The reader

should check some of the entries in the multiplication table (see Exercise 1.1-3).

The elements of the set {P0 P1 . . .P5} are the permutation operators, and binary

composition of two members of the set, say P3 P5, means ‘‘carry out the permutation

specified by P5 and then that specified by P3.’’ For example, P1 states ‘‘replace the contents

of box 1 by that of box 3, the contents of box 2 by that of box 1, and the contents of box 3 by

that of box 2.’’ So when applyingP1 to the configuration {3 1 2}, which resulted from P1 (in

order to find the result of applying P2
1 ¼ P1 P1 to the initial configuration) the contents of

box 1 (currently 3) are replaced by those of box 3 (which happens currently to be 2 – see the

line labeled P1); the contents of box 2 are replaced by those of box 1 (that is, 3); and finally

the contents of box 3 (currently 2) are replaced by those of box 2 (that is, 1). The resulting

configuration {2 3 1} is the same as that derived from the original configuration {1 2 3} by

P2, and so

1.1 Definitions 3
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P1 P1f1 2 3g ¼ f2 3 1g ¼ P2f1 2 3g (9)

so that P1 P1¼P2. Similarly, P2 P1¼P0, P3 P1¼P4, and so on. The equivalent single

operators (products) are shown in the right-hand column in the example in the last part of

Table 1.2. In this way, we build up the multiplication table of the group S(3), which is

shown in Table 1.3. Notice that the rearrangement theorem (closure) is satisfied and that

each element has an inverse. The set contains the identity P0, and examples to demonstrate

associativity are readily constructed (e.g. Exercise 1.1-4). Therefore this set of permu-

tations is a group. The group of all permutations of N objects is called the symmetric group

Table 1.2. Definition of the six permutation operators of the permutation group S(3) and

some examples of the evaluation of products of permutation operators.

In each example, the initial configuration appears on the first line and the permutation

operator and the result of the operation are on successive lines. In the last example, the

equivalent single operator is given on the right.

The identity P0¼E
1 2 3 original configuration (which therefore labels the ‘‘boxes’’)

P0 1 2 3 final configuration (in this case identical with the initial configuration)

The two cyclic permutations
1 2 3 1 2 3

P1 3 1 2 P2 2 3 1

The three binary interchanges
1 2 3 1 2 3 1 2 3

P3 1 3 2 P4 3 2 1 P5 2 1 3

Binary products with P1

1 2 3
P1 3 1 2 P1

P1 P1 2 3 1 P2

P2 P1 1 2 3 P0

P3 P1 3 2 1 P4

P4 P1 2 1 3 P5

P5 P1 1 3 2 P3

Table 1.3. Multiplication table for the permutation group S(3).

The box indicates the subgroup C(3).

S(3) P0 P1 P2 P3 P4 P5

P0 P0 P1 P2 P3 P4 P5

P1 P1 P2 P0 P5 P3 P4

P2 P2 P0 P1 P4 P5 P3

P3 P3 P4 P5 P0 P1 P2

P4 P4 P5 P3 P2 P0 P1

P5 P5 P3 P4 P1 P2 P0

4 The elementary properties of groups
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S(N). Since the number of permutations ofN objects isN!, the order of the symmetric group

is N!, and so that of S(3) is 3! = 6.

Exercise 1.1-3 Evaluate the products in the column headed P3 in Table 1.3.

Exercise 1.1-4 (a) Using the multiplication table for S(3) in Table 1.3 show that

(P3 P1)P2¼P3(P1 P2). This is an example of the group property of associativity.

(b) Find the inverse of P2 and also the inverse of P5.

Answers to Exercises 1.1

Exercise 1.1-1 (a) The set {p} does not form a group because it does not contain the

identity E. (b) The set {p 0} contains the identity 0, pþ 0¼ p, but the inverses {�p} of

the elements {p}, pþ (�p)¼ 0, are not members of the set {p 0}. (c) The set of positive

and negative integers, including zero, f p p 0g, does form a group since it has the four

group properties: it satisfies closure, and associativity, it contains the identity (0), and each

element p has an inverse p or�p.

Exercise 1.1-2 (a) g
p
i g

q
i ¼g

pþq
i ¼g

qþp
i ¼g

q
i g

p
i . (b) If p< c, g

p
i g

c�p
i ¼gci ¼E. Therefore,

the inverse of g
p
i is g

c�p
i . (c) !n¼ exp(�2pi)¼ 1¼E; therefore {! !2

. . . !n¼E} is a

cyclic group of order n.

Exercise 1.1-3

P0 1 2 3

P3 1 3 2 P3

P1 P3 2 1 3 P5

P2 P3 3 2 1 P4

P3 P3 1 2 3 P0

P4 P3 2 3 1 P2

P5 P3 3 1 2 P1

Exercise 1.1-4 (a) From the multiplication table, (P3 P1) P2¼P4 P2¼P3 and

P3 (P1 P2)¼P3 P0¼P3. (b) Again from the multiplication table, P2 P1¼P0¼E and

so P�1
2 ¼ P1; P5 P5 ¼ P0, P�1

5 ¼ P5.

1.2 Conjugate elements and classes

If gi, gj, gk 2 G and

gi gj g
�1
i ¼ gk (1)

then gk is the transform of gj, and gj and gk are conjugate elements. A complete set of the

elements conjugate to gi form a class, ci. The number of elements in a class is called the

order of the class; the order of ci will be denoted by ci.

1.2 Conjugate elements and classes 5
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Exercise 1.2-1 Show that E is always in a class by itself.

Example 1.2-1 Determine the classes of S(3). Note that P0¼E is in a class by itself; the

class of E is always named c1. Using the multiplication table for S(3), we find

P0 P1 P
�1
0 ¼ P1 P0 ¼ P1,

P1 P1 P
�1
1 ¼ P2 P2 ¼ P1,

P2 P1 P
�1
2 ¼ P0 P1 ¼ P1,

P3 P1 P
�1
3 ¼ P4 P3 ¼ P2,

P4 P1 P
�1
4 ¼ P5 P4 ¼ P2,

P5 P1 P
�1
5 ¼ P3 P5 ¼ P2:

Hence {P1 P2} form a class c2. The determination of c3 is left as an exercise.

Exercise 1.2-2 Show that there is a third class of S(3), c3¼{P3 P4 P5}.

Answers to Exercises 1.2

Exercise 1.2-1 For any group G with gi 2 G,

gi E g�1
i ¼ gi g

�1
i ¼ E:

Since E is transformed into itself by every element of G, E is in a class by itself.

Exercise 1.2-2 The transforms of P3 are

P0P3P
�1
0 ¼ P3P0 ¼ P3,

P1P3P
�1
1 ¼ P5P2 ¼ P4,

P2P3P
�1
2 ¼ P4P1 ¼ P5,

P3P3P
�1
3 ¼ P0P3 ¼ P3,

P4P3P
�1
4 ¼ P2P4 ¼ P5,

P5P3P
�1
5 ¼ P1P5 ¼ P4:

Therefore {P3 P4 P5} form a class, c3, of S(3).

1.3 Subgroups and cosets

A subset H of G, H � G, that is itself a group with the same law of binary composition, is a

subgroup of G. Any subset of G that satisfies closure will be a subgroup of G, since the other

group properties are then automatically fulfilled. The region of the multiplication table of

S(3) in Table 1.3 in a box shows that the subset {P0 P1 P2} is closed, so that this set is a

6 The elementary properties of groups
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subgroup of S(3). Moreover, since P2
1 ¼ P2, P

3
1 ¼ P1 P2 ¼ P0 ¼ E, it is a cyclic subgroup

of order 3, C(3).

Given a group G with subgroup H � G, then gr H, where gr 2 G but gr 62 H unless gr
is g1¼E, is called a left coset of H. Similarly, H gr is a right coset of H. The {gr}, gr 2 G

but gr 62 H, except for g1¼E, are called coset representatives. It follows from the

uniqueness of the product of two group elements (eq. (1.1.2)) that the elements of

gr H are distinct from those of gs H when s6¼r, and therefore that

G ¼
Pt

r¼1

gr H, gr 2 G, gr 62 H ðexcept for g1 ¼ EÞ, t ¼ g=h, (1)

where t is the index of H inG. Similarly, Gmay bewritten as the sum of t distinct right cosets,

G ¼
Pt

r¼1

H gr, gr 2 G, gr 62 H ðexcept for g1 ¼ EÞ, t ¼ g=h: (2)

If H gr¼ gr H, so that right and left cosets are equal for all r, then

gr H g�1
r ¼ H gr g

�1
r ¼ H (3)

and H is transformed into itself by any element gr 2 G that is not in H. But for any hj2H

hj H h�1
j ¼ hj H ¼ H ðclosureÞ: (4)

Therefore, H is transformed into itself by all the elements of G; H is then said to be an

invariant (or normal) subgroup of G.

Exercise 1.3-1 Prove that any subgroup of index 2 is an invariant subgroup.

Example 1.3-1 Find all the subgroups of S(3); what are their indices? Show explicitly

which, if any, of the subgroups of S(3) are invariant.

The subgroups of S(3) are

{P0 P1 P2}¼C(3), {P0 P3}¼H1, {P0 P4}¼H2, {P0 P5}¼H3.

Inspection of the multiplication table (Table 1.3) shows that all these subsets of S(3) are

closed. Since g¼ 6, their indices t are 2, 3, 3, and 3, respectively. C(3) is a subgroup of S(3)

of index 2, and so we know it to be invariant. Explicitly, a right coset expansion for S(3) is

fP0 P1 P2g þ fP0 P1 P2gP4 ¼ fP0 P1 P2 P3 P4 P5g ¼ Sð3Þ: (5)

The corresponding left coset expansion with the same coset representative is

fP0 P1 P2g þ P4fP0 P1 P2g ¼ fP0 P1 P2 P4 P5 P3g ¼ Sð3Þ: (6)

Note that the elements of G do not have to appear in exactly the same order in the left and

right coset expansions. This will only be so if the coset representatives commute with every

element of H. All that is necessary is that the two lists of elements evaluated from the coset

expansions both contain each element of G once only. It should be clear from eqs. (5) and

(6) that H gr¼ gr H, where H¼ {P0 P1 P2} and gr is P4. An alternative way of testing

for invariance is to evaluate the transforms of H. For example,

1.3 Subgroups and cosets 7
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P4fCð3ÞgP
�1
4 ¼ P4fP0 P1 P2gP

�1
4 ¼ fP4 P5 P3gP4 ¼ fP0 P2 P1g ¼ Cð3Þ: (7)

Similarly for P3 and P5, showing therefore that C(3) is an invariant subgroup of S(3).

Exercise 1.3-2 Show that C(3) is transformed into itself by P3 and by P5.

H1¼ {P0 P3} is not an invariant subgroup of S(3). Although

fP0 P3g þ fP0 P3gP1 þ fP0 P3gP2 ¼ fP0 P3 P1 P4 P2 P5g ¼ Sð3Þ, (8)

showing that H1 is a subgroup of S(3) of index 3,

fP0 P3gP1 ¼ fP1 P4g, but P1fP0 P3g ¼ fP1 P5g, (9)

so that right and left cosets of the representative P1 are not equal. Similarly,

fP0 P3gP2 ¼ fP2 P5g, but P2fP0 P3g ¼ fP2 P4g: (10)

Consequently, H1 is not an invariant subgroup. For H to be an invariant subgroup of G,

right and left cosets must be equal for each coset representative in the expansion of G.

Exercise 1.3-3 Show that H2 is not an invariant subgroup of S(3).

Answers to Exercises 1.3

Exercise 1.3-1 If t¼ 2, G¼Hþ g2H¼HþH g2. Therefore, H g2¼ g2H and the right and

left cosets are equal. Consequently, H is an invariant subgroup.

Exercise 1.3-2 P3fP0 P1 P2gP
�1
3 ¼fP3 P4 P5gP3 ¼fP0 P2 P1g and P5fP0 P1 P2gP

�1
5 ¼

fP5 P3 P4gP5 ¼fP0 P2 P1g, confirming that C(3) is an invariant subgroup of S(3).

Exercise 1.3-3 A coset expansion for H2 is

fP0 P4g þ fP0 P4gP1 þ fP0 P4gP2 ¼ fP0 P4 P1 P5 P2 P3g ¼ Sð3Þ:

The right coset for P1 is {P0 P4}P1¼ {P1 P5}, while the left coset for P1 is P1 {P0 P4}¼

{P1 P3}, which is not equal to the right coset for the same coset representative, P1. So H2 is

not an invariant subgroup of S(3).

1.4 The factor group

Suppose that H is an invariant subgroup of G of index t. Then the t cosets gr H of H

(including g1 H¼H) each considered as one element, form a group of order t called the

factor group,

8 The elementary properties of groups
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F ¼ G=H ¼
Pt

r¼1

ðgr HÞ, gr 2 G, gr 62 H (except for g1 ¼ EÞ, t ¼ g=h: (1)

Each term in parentheses, gr H, is one element of F. Because each element of F is a set of

elements of G, binary composition of these sets needs to be defined. Binary composition of

the elements of F is defined by

ðgp HÞðgq HÞ ¼ ðgp gqÞ H, gp, gq 2 fgrg, (2)

where the complete set {gr} contains g1¼ E as well as the t�1 coset representatives that

62 H. It follows from closure in G that gp gq 2 G. Because H is an invariant subgroup

gr H ¼ H gr: (3)

(2), (3) gp H gq H ¼ gp gp H H ¼ gp gq H: (4)

This means that in F

(4) H H ¼ H, (5)

which is the necessary and sufficient condition for H to be the identity in F.

Exercise 1.4-1 Show that g1 g1¼ g1 is both a necessary and sufficient condition for g1 to

be E, the identity element in G. [Hint: Recall that the identity element E is defined by

E gi ¼ gi E ¼ gi, 8 gi 2 G:� (1:1:5)

Thus, F contains the identity: that {F} is indeed a group requires the demon-stration of

the validity of the other group properties. These follow from the definition of binary

composition in F, eq. (2), and the invariance of H in G.

Closure: To demonstrate closure we need to show that gp gq H 2 F for gp, gq, gr 2 {gr}.

Now gp gq 2 G and so

(1) gp gq 2 fgr Hg, r ¼ 1, 2, . . . , t, (6)

(6) gp gq ¼ gr hl, hl 2 H, (7)

(2), (7) gp H gq H ¼ gp gq H ¼ gr hl H ¼ gr H 2 F: (8)

Associativity:

(2), (3), (4) ðgp H gq HÞgr H ¼ gp gq H gr H ¼ gp gq gr H, (9)

(2), (3), (4) gp Hðgq H gr HÞ ¼ gp H gq gr H ¼ gp gq gr H, (10)

(9), (10) ðgp H gq HÞgr H ¼ gp Hðgq H gr HÞ, (11)

and so multiplication of the elements of {F} is associative.

1.4 The factor group 9
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Inverse:

(2) ðg�1
r HÞðgr HÞ ¼ g�1

r gr H ¼ H, (12)

so that the inverse of gr H in F is g�1
r H.

Example 1.4-1 The permutation group S(3) has the invariant subgroup H¼ {P0 P1 P2}.

Here g¼ 6, h¼ 3, t¼ 2, and

G ¼ Hþ P3 H, F ¼ fH P3 Hg ¼ fE0 P0g, (13)

where the elements of F have primes to distinguish E0¼H 2 F from E 2 G.

(13), (2) P0P0 ¼ ðP3 HÞðP3 HÞ ¼ P3 P3 H ¼ P0 H ¼ H: (14)

E0 is the identity element in F, and so the multiplication table for the factor group of S(3),

F¼ {E0 P0}, is as given in Table 1.4.

Exercise 1.4-2 Using the definitions of E0 and P0 in eq. (13), verify explicitly that

E0 P0¼P0, P0 E0¼P0. [Hint: Use eq. (2).]

Exercise 1.4-3 Show that, with binary composition as multiplication, the set {1 �1 i �i},

where i2¼�1, form a group G. Find the factor group F¼G=H and write down its multi-

plication table. Is F isomorphous with a permutation group?

Answers to Exercises 1.4

Exercise 1.4-1

(1.1.5) E E gi ¼ E gi E ¼ E gi, 8 gi 2 G, (15)

(15) E E ¼ E, (16)

and so E E¼E is a necessary consequence of the definition of E in eq. (1.1.5). If g1 g1¼ g1,

then multiplying each side from the left or from the right by g1
�1 gives g1¼E,

which demonstrates that g1 g1¼ g1 is a sufficient condition for g1 to be E, the identity

element in G.

Table 1.4. Multiplication table of the factor group

F¼ {E0 P0}.

F E0 P0

E0 E0 P0

P0 P0 E0

10 The elementary properties of groups
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