PRINCIPLES OF LASERS AND OPTICS

Principles of Lasers and Optics describes both the fundamental principles of lasers and the propagation and application of laser radiation in bulk and guided wave components. All solid state, gas and semiconductor lasers are analyzed uniformly as macroscopic devices with susceptibility originated from quantum mechanical interactions to develop an overall understating of the coherent nature of laser radiation.

The objective of the book is to present lasers and applications of laser radiation from a macroscopic, uniform point of view. Analyses of the unique properties of coherent laser light in optical components are presented together and derived from fundamental principles, to allow students to appreciate the differences and similarities. Topics covered include a discussion of whether laser radiation should be analyzed as natural light or as a guided wave, the macroscopic differences and similarities between various types of lasers, special techniques, such as super-modes and the two-dimensional Green’s function for planar waveguides, and some unusual analyses.

This clearly presented and concise text will be useful for first-year graduates in electrical engineering and physics. It also acts as a reference book on the mathematical and analytical techniques used to understand many opto-electronic applications.

William S. C. Chang is an Emeritus Professor of the Department of Electrical and Computer Engineering, University of California at San Diego. A pioneer of microwave laser and optical laser research, his recent research interests include electro-optical properties and guided wave devices in III–V semiconductor hetero-junction and multiple quantum well structures, opto-electronics in fiber networks, and RF photonic links.

Professor Chang has published over 150 research papers on optical guided wave research and five books. His most recent book is RF Photonic Technology in Optical Fiber Links (Cambridge University Press, 2002).
PRINCIPLES OF LASERS
AND OPTICS

WILLIAM S. C. CHANG
Professor Emeritus
Department of Electrical Engineering and Computer Science
University of California San Diego
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>1 Scalar wave equations and diffraction of laser radiation</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The scalar wave equation</td>
<td>3</td>
</tr>
<tr>
<td>1.3 The solution of the scalar wave equation by Green’s function – Kirchhoff’s diffraction formula</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1 The general Green’s function G</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Green’s function, G_1, for U known on a planar aperture</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3 Green’s function for ∇U known on a planar aperture, G_2</td>
<td>11</td>
</tr>
<tr>
<td>1.3.4 The expression for Kirchhoff’s integral in engineering analysis</td>
<td>11</td>
</tr>
<tr>
<td>1.3.5 Fresnel and Fraunhofer diffraction</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Applications of the analysis of TEM waves</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1 Far field diffraction pattern of an aperture</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2 Fraunhofer diffraction in the focal plane of a lens</td>
<td>18</td>
</tr>
<tr>
<td>1.4.3 The lens as a transformation element</td>
<td>21</td>
</tr>
<tr>
<td>1.4.4 Integral equation for optical resonators</td>
<td>24</td>
</tr>
<tr>
<td>1.5 Superposition theory and other mathematical techniques derived from Kirchhoff’s diffraction formula</td>
<td>25</td>
</tr>
<tr>
<td>References</td>
<td>32</td>
</tr>
<tr>
<td>2 Gaussian modes in optical laser cavities and Gaussian beam optics</td>
<td>34</td>
</tr>
<tr>
<td>2.1 Modes in confocal cavities</td>
<td>36</td>
</tr>
<tr>
<td>2.1.1 The simplified integral equation for confocal cavities</td>
<td>37</td>
</tr>
<tr>
<td>2.1.2 Analytical solutions of the modes in confocal cavities</td>
<td>38</td>
</tr>
<tr>
<td>2.1.3 Properties of resonant modes in confocal cavities</td>
<td>39</td>
</tr>
<tr>
<td>2.1.4 Radiation fields inside and outside the cavity</td>
<td>45</td>
</tr>
</tbody>
</table>
Contents

2.1.5 Far field pattern of the TEM modes 46
2.1.6 General expression for the TEM\(_{lm}\) modes 46
2.1.7 Example illustrating the properties of confocal cavity modes 47
2.2 Modes in non-confocal cavities 48
 2.2.1 Formation of a new cavity for known modes of confocal resonators 49
 2.2.2 Finding the virtual equivalent confocal resonator for a given set of reflectors 50
 2.2.3 Formal procedure to find the resonant modes in non-confocal cavities 52
 2.2.4 Example of resonant modes in a non-confocal cavity 53
2.3 Gaussian beam solution of the vector wave equation 54
2.4 Propagation and transformation of Gaussian beams (the \(ABCD\) matrix) 57
 2.4.1 Physical meaning of the terms in the Gaussian beam expression 57
 2.4.2 Description of Gaussian beam propagation by matrix transformation 58
 2.4.3 Example of a Gaussian beam passing through a lens 61
 2.4.4 Example of a Gaussian beam passing through a spatial filter 62
 2.4.5 Example of a Gaussian beam passing through a prism 64
 2.4.6 Example of focusing a Gaussian beam 66
 2.4.7 Example of Gaussian mode matching 67
2.5 Modes in complex cavities 68
 2.5.1 Example of the resonance mode in a ring cavity 69

3 Guided wave modes and their propagation 72
 3.1 Asymmetric planar waveguides 74
 3.1.1 TE and TM modes in planar waveguides 75
 3.2 TE planar waveguide modes 77
 3.2.1 TE planar guided wave modes 77
 3.2.2 TE planar guided wave modes in a symmetrical waveguide 78
 3.2.3 Cut-off condition for TE planar guided wave modes 80
 3.2.4 Properties of TE planar guided wave modes 81
 3.2.5 TE planar substrate modes 83
 3.2.6 TE planar air modes 83

References 71
Contents

3.3 TM planar waveguide modes 85
 3.3.1 TM planar guided wave modes 85
 3.3.2 TM planar guided wave modes in a symmetrical waveguide 86
 3.3.3 Cut-off condition for TM planar guided wave modes 87
 3.3.4 Properties of TM planar guided wave modes 87
 3.3.5 TM planar substrate modes 89
 3.3.6 TM planar air modes 89

3.4 Generalized properties of guided wave modes in planar waveguides and applications 90
 3.4.1 Planar guided waves propagating in other directions in the \(yz \) plane 91
 3.4.2 Helmholtz equation for the generalized guided wave modes in planar waveguides 91
 3.4.3 Applications of generalized guided waves in planar waveguides 92

3.5 Rectangular channel waveguides and effective index analysis 98
 3.5.1 Example for the effective index method 102
 3.5.2 Properties of channel guided wave modes 103
 3.5.3 Phased array channel waveguide demultiplexer in WDM systems 103

3.6 Guided wave modes in single-mode round optical fibers 106
 3.6.1 Guided wave solutions of Maxwell’s equations 107
 3.6.2 Properties of the guided wave modes 109
 3.6.3 Properties of optical fibers 110
 3.6.4 Cladding modes 111

3.7 Excitation of guided wave modes 111

References 113

4 Guided wave interactions and photonic devices 114
 4.1 Perturbation analysis 115
 4.1.1 Fields and modes in a generalized waveguide 115
 4.1.2 Perturbation analysis 117
 4.1.3 Simple application of the perturbation analysis 119

 4.2 Coupling of modes in the same waveguide, the grating filter and the acousto-optical deflector 120
 4.2.1 Grating filter in a single-mode waveguide 120
 4.2.2 Acousto-optical deflector, frequency shifter, scanner and analyzer 125
Contents

4.3 Propagation of modes in parallel waveguides – the coupled modes and the super-modes 130
 4.3.1 Modes in two uncoupled parallel waveguides 130
 4.3.2 Analysis of two coupled waveguides based on modes of individual waveguides 131
 4.3.3 The directional coupler, viewed as coupled individual waveguide modes 133
 4.3.4 Directional coupling, viewed as propagation of super-modes 136
 4.3.5 Super-modes of two coupled non-identical waveguides 137

 4.4.1 Adiabatic Y-branch transition 138
 4.4.2 Super-mode analysis of wave propagation in a symmetric Y-branch 139
 4.4.3 Analysis of wave propagation in an asymmetric Y-branch 141
 4.4.4 Mach–Zehnder interferometer 142

4.5 Propagation in multimode waveguides and multimode interference couplers 144

References 148

5 Macroscopic properties of materials from stimulated emission and absorption 149
 5.1 Brief review of basic quantum mechanics 150
 5.1.1 Brief summary of the elementary principles of quantum mechanics 150
 5.1.2 Expectation value 151
 5.1.3 Summary of energy eigen values and energy states 152
 5.1.4 Summary of the matrix representation 153
 5.2 Time dependent perturbation analysis of \(\psi \) and the induced transition probability 156
 5.2.1 Time dependent perturbation formulation 156
 5.2.2 Electric and magnetic dipole and electric quadrupole approximations 159
 5.2.3 Perturbation analysis for an electromagnetic field with harmonic time variation 159
 5.2.4 Induced transition probability between two energy eigen states 161
 5.3 Macroscopic susceptibility and the density matrix 162
 5.3.1 Polarization and the density matrix 163
 5.3.2 Equation of motion of the density matrix elements 164
5.3.3 Solutions for the density matrix elements 166
5.3.4 Susceptibility 167
5.3.5 Significance of the susceptibility 168
5.3.6 Comparison of the analysis of χ with the quantum mechanical analysis of induced transitions 169
5.4 Homogeneously and inhomogeneously broadened transitions 170
 5.4.1 Homogeneously broadened lines and their saturation 171
 5.4.2 Inhomogeneously broadened lines and their saturation 173
References 178
6 Solid state and gas laser amplifier and oscillator 179
 6.1 Rate equation and population inversion 179
 6.2 Threshold condition for laser oscillation 181
 6.3 Power and optimum coupling for CW laser oscillators with homogeneous broadened lines 183
 6.4 Steady state oscillation in inhomogeneously broadened lines 186
 6.5 Q-switched lasers 187
 6.6 Mode locked laser oscillators 192
 6.6.1 Mode locking in lasers with an inhomogeneously broadened line 193
 6.6.2 Mode locking in lasers with a homogeneously broadened line 196
 6.6.3 Passive mode locking 197
 6.7 Laser amplifiers 198
 6.8 Spontaneous emission noise in lasers 200
 6.8.1 Spontaneous emission: the Einstein approach 201
 6.8.2 Spontaneous emission noise in laser amplifiers 202
 6.8.3 Spontaneous emission in laser oscillators 205
 6.8.4 The line width of laser oscillation 207
 6.8.5 Relative intensity noise of laser oscillators 210
References 211
7 Semiconductor lasers 212
 7.1 Macroscopic susceptibility of laser transitions in bulk materials 214
 7.1.1 Energy states 215
 7.1.2 Density of energy states 215
 7.1.3 Fermi distribution and carrier densities 216
 7.1.4 Stimulated emission and absorption and susceptibility for small electromagnetic signals 218
 7.1.5 Transparency condition and population inversion 221
 7.2 Threshold and power output of laser oscillators 221
 7.2.1 Light emitting diodes 223
7.3 Susceptibility and carrier densities in quantum well semiconductor materials
 7.3.1 Energy states in quantum well structures
 7.3.2 Density of states in quantum well structures
 7.3.3 Susceptibility
 7.3.4 Carrier density and Fermi levels
 7.3.5 Other quantum structures

7.4 Resonant modes of semiconductor lasers
 7.4.1 Cavities of edge emitting lasers
 7.4.2 Cavities of surface emitting lasers

7.5 Carrier and current confinement in semiconductor lasers

7.6 Direct modulation of semiconductor laser output by current injection

7.7 Semiconductor laser amplifier

7.8 Noise in semiconductor laser oscillators

References

Index
When I look back at my time as a graduate student, I realize that the most valuable knowledge that I acquired concerned fundamental concepts in physics and mathematics, quantum mechanics and electromagnetic theory, with specific emphasis on their use in electronic and electro-optical devices. Today, many students acquire such information as well as analytical techniques from studies and analysis of the laser and its light in devices, components and systems. When teaching a graduate course at the University of California San Diego on this topic, I emphasize the understanding of basic principles of the laser and the properties of its radiation.

In this book I present a unified approach to all lasers, including gas, solid state and semiconductor lasers, in terms of “classical” devices, with gain and material susceptibility derived from their quantum mechanical interactions. For example, the properties of laser oscillators are derived from optical feedback analysis of different cavities. Moreover, since applications of laser radiation often involve its well defined phase and amplitude, the analysis of such radiation in components and systems requires special care in optical procedures as well as microwave techniques. In order to demonstrate the applications of these fundamental principles, analytical techniques and specific examples are presented. I used the notes for my course because I was unable to find a textbook that provided such a compact approach, although many excellent books are already available which provide comprehensive treatments of quantum electronics, lasers and optics. It is not the objective of this book to present a comprehensive treatment of properties of lasers and optical components.

Our experience indicates that such a course can be covered in two academic quarters, and perhaps might be suitable for one academic semester in an abbreviated form. Students will learn both fundamental physics principles and analytical techniques from the course. They can apply what they have learned immediately to applications such as optical communication and signal processing. Professionals may find the book useful as a reference to fundamental principles and analytical techniques.