HARMONIC MAPPINGS IN THE PLANE

Harmonic mappings in the plane are univalent complex-valued harmonic functions of a complex variable. Conformal mappings are a special case where the real and imaginary parts are conjugate harmonic functions, satisfying the Cauchy–Riemann equations. Harmonic mappings were studied classically by differential geometers because they provide isothermal (or conformal) parameters for minimal surfaces. More recently they have been actively investigated by complex analysts as generalizations of univalent analytic functions, or conformal mappings. Many classical results of geometric function theory extend to harmonic mappings, but basic questions remain unresolved.

This book is the first comprehensive account of the theory of planar harmonic mappings, treating both the generalizations of univalent analytic functions and the connections with minimal surfaces. Essentially self-contained, the book contains background material in complex analysis and a full development of the classical theory of minimal surfaces, including the Weierstrass–Enneper representation. It is designed to introduce nonspecialists to a beautiful area of complex analysis and geometry.

Peter Duren is Professor of Mathematics at the University of Michigan, Ann Arbor.
HARMONIC MAPPINGS IN THE PLANE

PETER DUREN
University of Michigan
Dedicated to the memory of
Glenn Schober
(1938–1991)
Contents

Preface xi

1 Preliminaries 1
 1.1 Harmonic Mappings 1
 1.2 Some Basic Facts 3
 1.3 The Argument Principle 7
 1.4 The Dirichlet Problem 11
 1.5 Conformal Mappings 13
 1.6 Overview of Harmonic Mapping Theory 16

2 General Properties of Harmonic Mappings 18
 2.1 Critical Points of Harmonic Functions 18
 2.2 Lewy’s Theorem 20
 2.3 Heinz’s Lemma 21
 2.4 Radó’s Theorem 23
 2.5 Counterexamples in Higher Dimensions 25
 2.6 Approximation Theorem 27

3 Harmonic Mappings onto Convex Regions 29
 3.1 The Radó–Kneser–Choquet Theorem 29
 3.2 Choquet’s Proof 31
 3.3 Boundary Behavior 34
 3.4 The Shear Construction 36
 3.5 Structure of Convex Mappings 45
 3.6 Covering Theorems and Coefficient Bounds 48
 3.7 Failure of the Radó–Kneser–Choquet Theorem in \(\mathbb{R}^3 \) 54

4 Harmonic Self-Mappings of the Disk 57
 4.1 Representation by Radó–Kneser–Choquet Theorem 57
 4.2 Mappings onto Regular Polygons 59
 4.3 Arbitrary Convex Polygons 62
 4.4 Sharp Form of Heinz’s Inequality 66
Contents

4.5 Coefficient Estimates 72
4.6 Schwarz’s Lemma for Harmonic Mappings 75
5 Harmonic Univalent Functions 78
 5.1 Normalizations 78
 5.2 Normal Families 79
 5.3 The Harmonic Koebe Function 82
 5.4 Coefficient Conjectures 86
6 Extremal Problems 89
 6.1 Minimum Area 89
 6.2 Covering Theorems 90
 6.3 Estimation of $|a_2|$ 95
 6.4 Growth and Distortion 97
 6.5 Marty Relation 101
 6.6 Typically Real Functions 103
 6.7 Starlike Functions 106
7 Mapping Problems 111
 7.1 Generalized Riemann Mapping Theorem 111
 7.2 Collapsing 112
 7.3 Concavity of the Boundary 115
 7.4 Angles at Corners 118
 7.5 Existence Theorems 126
 7.6 Proof of Existence 129
 7.7 Uniqueness Problem 133
8 Additional Topics 136
 8.1 Harmonic Mappings of Annuli 136
 8.2 Multiply Connected Domains 138
 8.3 Inverse of a Harmonic Mapping 145
 8.4 Decomposition of Harmonic Functions 149
 8.5 Integral Means 151
9 Minimal Surfaces 156
 9.1 Background in Surface Theory 156
 9.2 Isothermal Parameters 162
 9.3 Weierstrass–Enneper Representation 165
 9.4 Some Examples 169
 9.5 Historical Notes 172
10 Curvature of Minimal Surfaces 173
 10.1 Gauss Curvature 173
 10.2 Minimal Graphs and Harmonic Mappings 175
 10.3 Heinz’s Lemma and Bounds on Curvature 182
Contents

10.4 Sharp Bounds on Curvature 186
10.5 Schwarzian Derivatives 189
Appendix Extremal Length 196

References 201
Index 211
Preface

Harmonic mappings in the plane are univalent complex-valued harmonic functions whose real and imaginary parts are not necessarily conjugate. In other words, the Cauchy–Riemann equations need not be satisfied, so the functions need not be analytic. Although harmonic mappings are natural generalizations of conformal mappings, they were studied originally by differential geometers because of their natural role in parametrizing minimal surfaces. Only in the mid-1980s did harmonic mappings begin to attract widespread interest among complex analysts. The catalyst was a landmark paper by James Clunie and Terry Sheil-Small in 1984, pointing out that many of the classical results for conformal mappings have clear analogues for harmonic mappings. Since that time the subject has developed rapidly, although a number of basic problems remain unresolved. This book is an attempt to make this beautiful material accessible to a wider mathematical public.

Most of the book concerns harmonic mappings in the plane, but there are occasional excursions into higher dimensions, if only to provide counterexamples. As a general rule, the rich structure of theory in the plane does not extend to higher-dimensional space. In many instances, the properties of analytic univalent functions serve as models for generalizations to harmonic mappings, but other results are peculiar to analytic functions and do not extend to more general harmonic mappings. On the other hand, some results for harmonic mappings have no counterpart for conformal mappings. This is particularly true of the connections with minimal surfaces, which are developed in the final two chapters.

The book is dedicated to my collaborator and close friend Glenn Schober. I began writing it a few months before Glenn’s untimely death in 1991 and had the benefit of discussing its contents with him as the project took shape. It would have been a better book if Glenn could have written it with me. In any event, it certainly reflects ideas and insights gained through our long association.
Preface

I am also grateful to Harold Shapiro, Walter Hengartner, and Terry Sheil-Small for teaching me essential things about harmonic mappings. Many people read and criticized early drafts of the book. First and foremost, Richard Laugesen went through much of the manuscript with a fine-toothed comb, spotted errors and ambiguities, and suggested many improvements. His generous help and constant encouragement were invaluable. Others who read and criticized portions of the manuscript were Walter Hengartner, Paul Greiner, John Pfaltzgraff, Željko Ćučković, Michael Dorff, and Dmitry Khavinson. Their comments were helpful and are much appreciated. Paul Greiner also assisted in producing the figures drawn with Mathematica. Marcin Bownik was a great help in extracting the figures from the computer and preparing them for publication.

Finally, I would like to thank Lauren Cowles, David Tranah, and others at Cambridge University Press for expert advice and technical assistance, and for amazing patience with a long overdue manuscript.

Peter Duren
Ann Arbor, Michigan