
Measuring computer performance

A practitioner's guide

Measuring computer performance sets out the fundamental techniques used in analyzing and

understanding the performance of computer systems. Throughout the book, the emphasis is

on practical methods of measurement, simulation and analytical modeling.

The author discusses performance metrics and provides detailed coverage of the strategies

used in benchmark programs. He gives intuitive explanations of the key statistical tools needed

to interpret measured performance data. He also describes the general `design of experiments'

technique, and shows how the maximum amount of information can be obtained for the

minimum effort. The book closes with a chapter on the technique of queueing analysis.

Appendices listing common probability distributions and statistical tables are included,

along with a glossary of important technical terms. This practically oriented book will be of

great interest to anyone who wants a detailed, yet intuitive, understanding of computer sys-

tems performance analysis.

Measuring
computer performance

A practitioner's guide

David J. Lilja
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne, 3166, Australia
Ruiz de AlarcoÂ n 13, 28014 Madrid, Spain

Cambridge University Press 2000

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2000

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10.5/14pt by Keyword Typesetting Services Ltd, Wallington, Surrey

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Lilja, David J.
Measuring computer performance: a practitioner's guide / David J. Lilja.
p. cm
ISBN 0 521 64105 5
1. Electronic digital computers ± Evaluation ± Congresses. I. Title.
QA76.9.E94 L54 2000
004.2 04±dc21 99-057225 CIP

ISBN 0 521 64105 5 hardback

Contents

Preface xi

Acknowledgements xv

1 Introduction 1

1.1 Measuring performance 1

1.2 Common goals of performance analysis 2

1.3 Solution techniques 4

1.4 Summary 7

1.5 Exercises 7

2 Metrics of performance 9

2.1 What is a performance metric? 9

2.2 Characteristics of a good performance metric 10

2.3 Processor and system performance metrics 12

2.4 Other types of performance metrics 19

2.5 Speedup and relative change 19

2.6 Means versus ends metrics 21

2.7 Summary 23

2.8 For further reading 23

2.9 Exercises 24

3 Average performance and variability 25

3.1 Why mean values? 25

3.2 Indices of central tendency 26

3.3 Other types of means 29

vii

3.4 Quantifying variability 35

3.5 Summary 39

3.6 For further reading 40

3.7 Exercises 41

4 Errors in experimental measurements 43

4.1 Accuracy, precision, and resolution 43

4.2 Sources of errors 45

4.3 A model of errors 46

4.4 Quantifying errors 47

4.5 Summary 57

4.6 For further reading 57

4.7 Exercises 58

5 Comparing alternatives 61

5.1 Comparing two alternatives 62

5.2 Comparing more than two alternatives 71

5.3 Summary 80

5.4 For further reading 80

5.5 Exercises 81

6 Measurement tools and techniques 82

6.1 Events and measurement strategies 82

6.2 Interval timers 86

6.3 Program pro®ling 92

6.4 Event tracing 97

6.5 Indirect and ad hoc measurements 104

6.6 Perturbations due to measuring 105

6.7 Summary 107

6.8 For further reading 108

6.9 Exercises 109

Contentsvi i i

7 Benchmark programs 111

7.1 Types of benchmark programs 112

7.2 Benchmark strategies 117

7.3 Example benchmark programs 125

7.4 Summary 132

7.5 For further reading 135

7.6 Exercises 137

8 Linear-regression models 139

8.1 Least-squares minimization 139

8.2 Con®dence intervals for regression parameters 142

8.3 Correlation 145

8.4 Multiple linear regression 148

8.5 Verifying linearity 150

8.6 Nonlinear models 151

8.7 Summary 155

8.8 For further reading 155

8.9 Exercises 156

9 The design of experiments 157

9.1 Types of experiments 158

9.2 Terminology 158

9.3 Two-factor experiments 159

9.4 Generalized m-factor experiments 168

9.5 n2m experiments 172

9.6 Summary 177

9.7 For further reading 177

9.8 Exercises 178

10 Simulation and random-number generation 181

10.1 Simulation-ef®ciency considerations 182

10.2 Types of simulations 183

10.3 Random-number generation 190

Contentsix

10.4 Veri®cation and validation of simulations 203

10.5 Summary 212

10.6 For further reading 213

10.7 Exercises 214

11 Queueing analysis 217

11.1 Queueing-network models 218

11.2 Basic assumptions and notation 220

11.3 Operational analysis 221

11.4 Stochastic analysis 225

11.5 Summary 235

11.6 For further reading 237

11.7 Exercises 237

Appendix A Glossary 239

Appendix B Some useful probability distributions 242

Appendix C Selected statistical tables 249

Index 258

Contentsx

1 Introduction

`Performance can be bad, but can it ever be wrong?'

Jim Kohn, SGI/Cray Research, Inc.

1.1 Measuring performance

If the automobile industry had followed the same development cycles as the

computer industry, it has been speculated that a Rolls Royce car would cost

less than $100 with an ef®ciency of more than 200 miles per gallon of gasoline.

While we certainly get more car for our money now than we did twenty years

ago, no other industry has ever changed at the incredible rate of the computer

and electronics industry.

Computer systems have gone from being the exclusive domain of a few scien-

tists and engineers who used them to speed up some esoteric computations, such

as calculating the trajectory of artillery shells, for instance, to being so common

that they go unnoticed. They have replaced many of the mechanical control

systems in our cars, thereby reducing cost while improving ef®ciency, reliability,

and performance. They have made possible such previously science-®ction-like

devices as cellular phones. They have provided countless hours of entertainment

for children ranging in age from one to one hundred. They have even brought

sound to the common greeting card. One constant throughout this proliferation

and change, however, has been the need for system developers and users to

understand the performance of these computer-based devices.

While measuring the cost of a system is usually relatively straightforward

(except for the confounding effects of manufacturers' discounts to special cus-

tomers), determining the performance of a computer system can oftentimes seem

like an exercise in futility. Surprisingly, one of the main dif®culties in measuring

performance is that reasonable people often disagree strongly on how perfor-

mance should be measured or interpreted, and even on what `performance'

actually means.

1

Performance analysis as applied to experimental computer science and engi-

neering should be thought of as a combination of measurement, interpretation,

and communication of a computer system's `speed' or `size' (sometimes referred

to as its `capacity'). The terms speed and size are quoted in this context to

emphasize that their actual de®nitions often depend on the speci®cs of the situa-

tion. Also, it is important to recognize that we need not necessarily be dealing

with complete systems. Often it is necessary to analyze only a small portion of

the system independent of the other components. For instance, we may be inter-

ested in studying the performance of a certain computer system's network inter-

face independent of the size of its memory or the type of processor.

Unfortunately, the components of a computer system can interact in incredibly

complex, and frequently unpredictable, ways. One of the signs of an expert

computer performance analyst is that he or she can tease apart these interactions

to determine the performance effect due only to a particular component.

One of the most interesting tasks of the performance analyst can be ®guring

out how to measure the necessary data. A large dose of creativity may be needed

to develop good measurement techniques that perturb the system as little as

possible while providing accurate, reproducible results. After the necessary

data have been gathered, the analyst must interpret the results using appropriate

statistical techniques. Finally, even excellent measurements interpreted in a sta-

tistically appropriate fashion are of no practical use to anyone unless they are

communicated in a clear and consistent manner.

1.2 Common goals of performance analysis

The goals of any analysis of the performance of a computer system, or one of its

components, will depend on the speci®c situation and the skills, interests, and

abilities of the analyst. However, we can identify several different typical goals of

performance analysis that are useful both to computer-system designers and to

users.

. Compare alternatives. When purchasing a new computer system, you may be

confronted with several different systems from which to choose. Furthermore,

you may have several different options within each system that may impact

both cost and performance, such as the size of the main memory, the number

of processors, the type of network interface, the size and number of disk

drives, the type of system software (i.e., the operating system and compilers),

and on and on. The goal of the performance analysis task in this case is to

provide quantitative information about which con®gurations are best under

speci®c conditions.

Introduction2

. Determine the impact of a feature. In designing new systems, or in upgrading

existing systems, you often need to determine the impact of adding or remov-

ing a speci®c feature of the system. For instance, the designer of a new pro-

cessor may want to understand whether it makes sense to add an additional

¯oating-point execution unit to the microarchitecture, or whether the size of

the on-chip cache should be increased instead. This type of analysis is often

referred to as a before-and-after comparison since only one well-de®ned com-

ponent of the system is changed.

. System tuning. The goal of performance analysis in system tuning is to ®nd the

set of parameter values that produces the best overall performance. In time-

shared operating systems, for instance, it is possible to control the number of

processes that are allowed to actively share the processor. The overall perfor-

mance perceived by the system users can be substantially impacted both by

this number, and by the time quantum allocated to each process. Many other

system parameters, such as disk and network buffer sizes, for example, can

also signi®cantly impact the system performance. Since the performance

impacts of these various parameters can be closely interconnected, ®nding

the best set of parameter values can be a very dif®cult task.

. Identify relative performance. The performance of a computer system typically

has meaning only in the context of its performance relative to something else,

such as another system or another con®guration of the same system. The goal

in this situation may be to quantify the change in performance relative to

history ± that is, relative to previous generations of the system. Another

goal may be to quantify the performance relative to a customer's expectations,

or to a competitor's systems, for instance.

. Performance debugging. Debugging a program for correct execution is a fun-

damental prerequisite for any application program. Once the program is

functionally correct, however, the performance analysis task becomes one of

®nding performance problems. That is, the program now produces the correct

results, but it may be much slower than desired. The goal of the performance

analyst at this point is to apply the appropriate tools and analysis techniques

to determine why the program is not meeting performance expectations. Once

the performance problems are identi®ed, they can, it is to be hoped, be cor-

rected.

. Set expectations. Users of computer systems may have some idea of what the

capabilities of the next generation of a line of computer systems should be.

The task of the performance analyst in this case is to set the appropriate

expectations for what a system is actually capable of doing.

In all of these situations, the effort involved in the performance-analysis task

should be proportional to the cost of making the wrong decision. For example, if

1.2 Common goals of performance analysis3

you are comparing different manufacturers' systems to determine which best

satis®es the requirements for a large purchasing decision, the ®nancial cost of

making the wrong decision could be quite substantial, both in terms of the cost

of the system itself, and in terms of the subsequent impacts on the various parts

of a large project or organization. In this case, you will probably want to perform

a very detailed, thorough analysis. If, however, you are simply trying to choose a

system for your own personal use, the cost of choosing the wrong one is minimal.

Your performance analysis in this case may be correctly limited to reading a few

reviews from a trade magazine.

1.3 Solution techniques

When one is confronted with a performance-analysis problem, there are three

fundamental techniques that can be used to ®nd the desired solution. These are

measurements of existing systems, simulation, and analytical modeling. Actual

measurements generally provide the best results since, given the necessary mea-

surement tools, no simplifying assumptions need to be made. This characteristic

also makes results based on measurements of an actual system the most believ-

able when they are presented to others. Measurements of real systems are not

very ¯exible, however, in that they provide information about only the speci®c

system being measured. A common goal of performance analysis is to character-

ize how the performance of a system changes as certain parameters are varied. In

an actual system, though, it may be very dif®cult, if not impossible, to change

some of these parameters. Evaluating the performance impact of varying the

speed of the main memory system, for instance, is simply not possible in most

real systems. Furthermore, measuring some aspects of performance on an actual

system can be very time-consuming and dif®cult. Thus, while measurements of

real systems may provide the most compelling results, their inherent dif®culties

and limitations produce a need for other solution techniques.

A simulation of a computer system is a program written to model important

features of the system being analyzed. Since the simulator is nothing more than a

program, it can be easily modi®ed to study the impact of changes made to almost

any of the simulated components. The cost of a simulation includes both the time

and effort required to write and debug the simulation program, and the time

required to execute the necessary simulations. Depending on the complexity of

the system being simulated, and the level of detail at which it is modeled, these

costs can be relatively low to moderate compared with the cost of purchasing a

real machine on which to perform the corresponding experiments.

The primary limitation of a simulation-based performance analysis is that it is

impossible to model every small detail of the system being studied. Consequently,

Introduction4

simplifying assumptions are required in order to make it possible to write the

simulation program itself, and to allow it to execute in a reasonable amount of

time. These simplifying assumptions then limit the accuracy of the results by

lowering the ®delity of the model compared with how an actual system would

perform. Nevertheless, simulation enjoys tremendous popularity for computer-

systems analysis due to its high degree of ¯exibility and its relative ease of

implementation.

The third technique in the performance analyst's toolbox is analytical model-

ing. An analytical model is a mathematical description of the system. Compared

with a simulation or a measurement of a real machine, the results of an analytical

model tend to be much less believable and much less accurate. A simple analy-

tical model, however, can provide some quick insights into the overall behavior

of the system, or one of its components. This insight can then be used to help

focus a more detailed measurement or simulation experiment. Analytical models

are also useful in that they provide at least a coarse level of validation of a

simulation or measurement. That is, an analytical model can help con®rm

whether the results produced by a simulator, or the values measured on a real

system, appear to be reasonable.

Example. The delay observed by an application program when accessing mem-

ory can have a signi®cant impact on its overall execution time. Direct measure-

ments of this time on a real machine can be quite dif®cult, however, since the

detailed steps involved in the operation of a complex memory hierarchy structure

are typically not observable from a user's application program. A sophisticated

user may be able to write simple application programs that exercise speci®c

portions of the memory hierarchy to thereby infer important memory-system

parameters. For instance, the execution time of a simple program that repeatedly

references the same variable can be used to estimate the time required to access

the ®rst-level cache. Similarly, a program that always forces a cache miss can be

used to indirectly measure the main memory access time. Unfortunately, the

impact of these system parameters on the execution time of a complete applica-

tion program is very dependent on the precise memory-referencing characteris-

tics of the program, which can be dif®cult to determine.

Simulation, on the other hand, is a powerful technique for studying memory-

system behavior due to its high degree of ¯exibility. Any parameter of the mem-

ory, including the cache associativity, the relative cache and memory delays, the

sizes of the cache and memory, and so forth, can be easily changed to study its

impact on performance. It can be challenging, however, to accurately model in a

simulator the overlap of memory delays and the execution of other instructions

in contemporary processors that incorporate such performance-enhancing fea-

tures as out-of-order instruction issuing, branch prediction, and nonblocking

caches. Even with the necessary simplifying assumptions, the results of a detailed

1.3 Solution techniques5

simulation can still provide useful insights into the effect of the memory system

on the performance of a speci®c application program.

Finally, a simple analytical model of the memory system can be developed as

follows. Let tc be the time delay observed by a memory reference if the memory

location being referenced is in the cache. Also, let tm be the corresponding delay

if the referenced location is not in the cache. The cache hit ratio, denoted h, is the

fraction of all memory references issued by the processor that are satis®ed by the

cache. The fraction of references that miss in the cache and so must also access

the memory is 1ÿ h. Thus, the average time required for all cache hits is htc while

the average time required for all cache misses is �1ÿ h�tm. A simple model of the

overall average memory-access time observed by an executing program then is

tavg � htc � �1ÿ h�tm: �1:1�
To apply this simple model to a speci®c application program, we would need

to know the hit ratio, h, for the program, and the values of tc and tm for the

system. These memory-access-time parameters, tc and tm, may often be found in

the manufacturer's speci®cations of the system. Or, they may be inferred through

a measurement, as described above and as explored further in the exercises in

Chapter 6. The hit ratio, h, for an application program is typically more dif®cult

to obtain. It is often found through a simulation of the application, though.

Although this model will provide only a very coarse estimate of the average

memory-access time observed by a program, it can provide us with some insights

into the relative effects of increasing the hit ratio, or changing the memory-

timing parameters, for instance. ^
The key differences among these solution techniques are summarized in Table

1.1. The ¯exibility of a technique is an indication of how easy it is to change the

system to study different con®gurations. The cost corresponds to the time, effort,

and money necessary to perform the appropriate experiments using each tech-

nique. The believability of a technique is high if a knowledgeable individual has a

high degree of con®dence that the result produced using that technique is likely

to be correct in practice. It is much easier for someone to believe that the

execution time of a given application program will be within a certain range

when you can demonstrate it on an actual machine, for instance, than when

relying on a mere simulation. Similarly, most people are more likely to believe

the results of a simulation study than one that relies entirely on an analytical

model. Finally, the accuracy of a solution technique indicates how closely results

obtained when using that technique correspond to the results that would have

been obtained on a real system.

The choice of a speci®c solution technique depends on the problem being

solved. One of the skills that must be developed by a computer-systems perfor-

mance analyst is determining which technique is the most appropriate for the

Introduction6

given situation. The following chapters are designed to help you develop pre-

cisely this skill.

1.4 Summary

Computer-systems performance analysis often feels more like an art than a

science. Indeed, different individuals can sometimes reach apparently contradic-

tory conclusions when analyzing the same system or set of systems. While this

type of ambiguity can be quite frustrating, it is often due to misunderstandings of

what was actually being measured, or disagreements about how the data should

be analyzed or interpreted. These differences further emphasize the need to

clearly communicate all results and to completely specify the tools, techniques,

and system parameters used to collect and understand the data. As you study the

following chapters, my hope is that you will begin to develop an appreciation for

this art of measurement, interpretation, and communication in addition to devel-

oping a deeper understanding of its mathematical and scienti®c underpinnings.

1.5 Exercises

1. Respond to the question quoted at the beginning of this chapter,

`Performance can be bad, but can it ever be wrong?'

2. Performance analysis should be thought of as a decision-making process.

Section 1.2 lists several common goals of a performance-analysis experiment.

List other possible goals of the performance-analysis decision-making pro-

cess. Who are the bene®ciaries of each of these possible goals?

1.5 Exercises

Table 1.1. A comparison of the performance-analysis solution techniques

Characteristic

Solution technique

Analytical

modeling

Simulation Measurement

Flexibility High High Low

Cost Low Medium High

Believability Low Medium High

Accuracy Low Medium High

7

3. Table 1.1 compares the three main performance-analysis solution techniques

across several criteria. What additional criteria could be used to compare

these techniques?

4. Identify the most appropriate solution technique for each of the following

situations.

(a) Estimating the performance bene®t of a new feature that an engineer is

considering adding to a computer system currently being designed.

(b) Determining when it is time for a large insurance company to upgrade to

a new system.

(c) Deciding the best vendor from which to purchase new computers for an

expansion to an academic computer lab.

(d) Determining the minimum performance necessary for a computer system

to be used on a deep-space probe with very limited available electrical

power.

Introduction8

