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quantum mechanics. Numerous applications of the theorems are described to aid
understanding.
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Preface

This book is written for graduate students and professionals in physics, chemistry and
in particular for those who are interested in crystal and magnetic crystal symmetries. It
is mostly based on the papers written by the author over the last 20 years and the
lectures given at Temple University. The aim of the book is to systematize the wealth
of knowledge on point groups and their extensions which has accumulated over a
century since Schonflies and Fedrov discovered the 230 space groups in 1895. Simple,
unambiguous methods of construction for the relevant groups and their representations
introduced in the book may overcome the abstract nature of the group theoretical
methods applied to physical chemical problems.

For example, a unified approach to the point groups and the space groups is
proposed. Firstly, a point group of finite order is defined by a set of the algebraic
defining relations (or presentation) through the generators in Chapter 5. Then, by
incorporating the translational degree of freedom into the presentations of the 32
crystallographic point groups, I have determined the 32 minimum general generator
sets (MGGSs) which generate the 230 space groups in Chapter 13. Their representa-
tions follow from a set of five general expressions of the projective representations of
the point groups given in Chapter 12. It is simply amazing to see that the simple
algebraic defining relations of point groups are so very far-reaching.

In almost all other textbooks or monographs on solid-state physics, the space groups
may be tabulated, but without their derivations, as if they were ‘god-given’. The main
reason could have been the lack of a simple method for the derivations. As a result, the
group theoretical methods have been unnecessarily abstract in an age when students
are very familiar with non-commuting physical quantities in quantum mechanics.

The book is self-sufficient even though some elementary knowledge of quantum
mechanics is assumed. No previous knowledge of group theory is required. In
providing the basic essentials, introductory examples are given prior to the theorems.
Effort has been made to provide the simplest and easiest but rigorous proofs for any
theorem described in the book. Applications are fully developed. Each chapter
contains something new or different in approach that cannot be found in any other
monograph. For example, even in the basic theory on matrix transformation given in
Chapter 2, I have introduced an involutional transformation into the Dirac theory of
the electron and arrived at the Dirac plane wave solution in one step. This transforma-
tion is used frequently in later chapters. The transformation is further extended to a
new general theory of matrix diagonalization that provides the transformation matrix
as a polynomial of the matrix to be diagonalized. This theory is included for its
usefulness even though it is somewhat mathematical.

Some further typical features of the book are worth mentioning here. In Chapter 5, |
have introduced a faithful representation for a point group using the unit basis vectors of
the coordinate system. This allows one to construct the multiplication table of any point
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xvi Preface

group, e.g. the octahedral group, with ease. A new unified system of classifications for
the improper point groups and anti-unitary (or magnetic) point groups is introduced,
using the fact that both the inversion and the time-reversal operator commute with all
the point operations. This system is quite effective for describing their isomorphisms,
and thereby greatly simplifies the construction of their matrix representations and co-
representations in its entirety. In Chapter 7, I have introduced a simple correspondence
theorem on the basis functions of a point group G and thereby developed a general
method of constructing the symmetry-adapted linear combinations (SALCs) of equiva-
lent basis functions with respect to G. It is then applied to construct SALCs of
equivalent atomic orbitals and the symmetry coordinates of vibration for molecules and
later for crystals in Chapter 15. This theory requires only knowledge of the elementary
basis functions of the irreducible representation and does not require the matrix
representation. This is in quite a contrast to the conventional projection operator
method. The correspondence theorem is further extended to form the energy band
eigenfunctions of the electron in a solid in Chapter 15. By incorporating the time-
reversal symmetry into point groups, anti-unitary (magnetic) point groups are formed in
Chapter 16. Analogously, 38 assemblies of MGGSs for 1421 anti-unitary space groups
are formed from the 32 MGGSs of space groups in Chapter 17. Their co-representations
are introduced and applied to the selection rules under the anti-unitary groups.

Once a reader is familiar with the basic aspects of the group theoretical methods
given in Chapters 3, 4 and 5, the reader can pick and choose to read any applications
in later chapters using the rest of the book as the built-in references. This is possible
because each chapter is as self-contained as possible and also an effective numbering
system is introduced for referring to the theorems, equations and figures given in the
book. Numerous examples of the applications of theorems are given as illustrations. In
some chapters, I introduced a simplified special proof for a theorem to help under-
standing, even though its general proof had been given in an earlier chapter. In
particular, those who are interested in the applications to inorganic chemistry may
directly start from Chapter 7 with minimum knowledge of the group theoretical
methods. One of my colleagues, Professor S. Jansen-Varnum, used the theory of
symmetry-adapted linear combinations based on the correspondence theorem de-
scribed in Chapter 7 of my manuscript for teaching both undergraduate and graduate
courses in inorganic chemistry.
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€ belongs to, e.g. g € S means an element g belongs to a set S.
A for all, e.g. V g € S means forall g € S.
* complex conjugate.
~ transpose, e.g. A~ is the transpose of the matrix A.
t adjoint or Hermitian adjoint, i.e. 4T = 4™~
— is mapped onto.
— one-to-one correspondence.
Q direct product.
D direct sum.
N set-theoretic intersection, e.g., S1 N S, is the set common to the two sets
S] and Sz.
{} set of all elements.
H<G H is a subgroup of a group G.
H<G H is an invariant subgroup of a group G.
G X Gy the direct product group of two groups G; and Gy.
FANH the semidirect product of two groups F and H, where F is invariant
under H.
F~H Two groups F and H are isomorphic.
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