Fundamentals of Atmospheric Modeling

This comprehensive text describes the atmospheric processes, numerical methods, and computational techniques required for a scientist to successfully study air pollution and meteorology.

Computer modeling has become a powerful tool in modern atmospheric sciences, combining the disciplines of meteorology, physics, mathematics, chemistry, computer sciences, and, to a lesser extent, geology, biology, microbiology, and oceanographic sciences. This text presents fundamental equations that describe physical, chemical, and dynamical processes in the atmosphere, and it provides numerical methods to solve these equations. Along with classic methods of simulating dynamical meteorology, the text contains several numerical techniques for simulating gas and aerosol processes not available in any other text.

The book has been developed from the author’s graduate courses and research at Stanford University and contains homework and computer programming assignments. It is a valuable textbook for graduate and upper-level undergraduate courses in atmospheric sciences and meteorology. It will also be useful for courses in earth sciences, environmental sciences, and applied mathematics.

Mark Z. Jacobson is currently Professor of Civil and Environmental Engineering at Stanford University. He received a B.S. with distinction in Civil Engineering, a B.A. with distinction in Economics, an M.S. in Environmental Engineering from Stanford University in 1988, and an M.S. and PhD in Atmospheric Sciences from UCLA in 1991 and 1994, respectively. In addition to numerous awards and scholarships, he received an NCAA-ITCA scholar-athlete of the year award while at Stanford University, in 1985, 1986, and 1987.
To Dionna and Daniel
Fundamentals of Atmospheric Modeling

MARK Z. JACOBSON
Contents

Preface xi

1 Introduction 1
 1.1. Weather, Climate, and Air Pollution 1
 1.2. Scales of Motion 2
 1.2. Atmospheric Processes 3

2 Atmospheric Structure, Composition, and Thermodynamics 6
 2.1. Pressure, Density, and Composition 6
 2.2. Temperature Structure 11
 2.3. Equation of State 19
 2.4. Change in Pressure with Altitude 25
 2.5. Water in the Atmosphere 28
 2.6. First Law of Thermodynamics 38
 2.7. Summary 49
 2.8. Problems 49
 2.9. Computer Programming Practice 51

3 The Continuity and Thermodynamic Energy Equations 53
 3.1. Local and Total Differentiation 53
 3.2. Continuity Equations 57
 3.3. Expanded Continuity Equations 59
 3.4. Thermodynamic Energy Equation 69
 3.5. Summary 72
 3.6. Problems 72
 3.7. Computer Programming Practice 73

4 The Momentum Equation in Cartesian and Spherical Coordinates 74
 4.1. Conversion From Cartesian to Spherical Coordinates 74
 4.2. Newton's Second Law of Motion 78
 4.3. Applications of the Momentum Equation 101
 4.4. Summary 122
 4.5. Problems 122
 4.6. Computer Programming Practice 123
Contents

5 Vertical-Coordinate Conversions
- 5.1. Altitude Coordinate 124
- 5.2. Pressure Coordinate 127
- 5.3. Sigma-Pressure Coordinate 135
- 5.4. Sigma-Altitude Coordinate 144
- 5.5. Summary 150
- 5.6. Problems 151
- 5.7. Computer Programming Practice 152

6 Numerical Solutions to Partial Differential Equations
- 6.1. Ordinary and Partial Differential Equations 153
- 6.2. Operator-Splitting 154
- 6.3. Advection–Diffusion Equations 155
- 6.4. Finite-Difference Approximations 156
- 6.5. Series Expansion Methods 174
- 6.6. Advection Schemes Used in Air-Quality Models 180
- 6.7. Summary 181
- 6.8. Problems 181
- 6.9. Computer Programming Practice 181

7 Finite-Differencing the Equations of Atmospheric Dynamics
- 7.1. Vertical Model Grid 183
- 7.2. The Continuity Equation for Air 186
- 7.3. The Species Continuity Equation 189
- 7.4. The Thermodynamic Energy Equation 191
- 7.5. The Horizontal Momentum Equations 192
- 7.6. The Hydrostatic Equation 198
- 7.7. Order of Calculations 198
- 7.8. Time-Stepping Schemes 199
- 7.9. Summary 200
- 7.10. Problems 200
- 7.11. Computer Programming Practice 201
- 7.12. Modeling Project 201

8 Boundary-Layer Processes
- 8.1. Turbulent Fluxes of Momentum 203
- 8.2. Turbulent Fluxes of Energy and Water Vapor 204
- 8.3. Friction Velocity 205
- 8.4. Surface Roughness Lengths 206
- 8.5. Bulk Aerodynamic Equations for Eddy Diffusion 208
- 8.6. Monin–Obukhov Similarity Theory 211
- 8.7. Eddy Diffusion Above the Surface Layer 220
- 8.8. Ground Surface Temperature and Soil Moisture 221
- 8.9. Summary 225
Contents

8.10. Problems 226
8.11. Computer Programming Practice 226

9 Cloud Thermodynamics and Dynamics 227
9.1. Fog and Cloud Types and Formation Mechanisms 227
9.2. Moist- and Pseudoadiabatic Processes 231
9.3. Cloud Development by Free Convection 235
9.4. Entrainment 237
9.5. Vertical Momentum Equation in a Cloud 239
9.6. Convective Available Potential Energy 241
9.7. Cumulus Parameterizations 242
9.8. Summary 243
9.9. Problems 244
9.10. Computer Programming Practice 244

10 Radiative Energy Transfer 245
10.1. Energy Transfer Processes 245
10.2. Electromagnetic Spectrum 247
10.3. Light Processes 255
10.4. Absorption and Scattering by Gases and Particles 261
10.5. Visibility 276
10.6. Optical Depth 279
10.7. Solar Zenith Angle 280
10.8. The Radiative Transfer Equation 283
10.9. Summary 295
10.10. Problems 296
10.11. Computer Programming Practice 297

11 Gas-Phase Species, Chemical Reactions, and Reaction Rates 298
11.1. Atmospheric Gases and Their Molecular Structures 298
11.2. Chemical Reactions and Photoprocesses 303
11.3. Reaction Rates 305
11.4. Reaction Rate Coefficients 308
11.5. Sets of Reactions 312
11.6. Stiff Systems 314
11.7. Summary 316
11.8. Problems 316
11.9. Computer Programming Practice 317

12 Urban, Free-Tropospheric, and Stratospheric Chemistry 318
12.1. Free-Tropospheric Photochemistry 318
12.2. Urban Photochemistry 335
12.3. Stratospheric Photochemistry 351
12.4. Summary 370

vii
12.5. Problems 370
12.6. Computer Programming Practice 371

13 Methods of Solving Chemical Ordinary Differential Equations 373
13.1. Characteristics of Chemical ODEs 373
13.2. Analytical Solutions to ODEs 376
13.3. Taylor Series Solution to ODEs 376
13.4. Forward Euler Solution to ODEs 377
13.5. Backward Euler Solution to ODEs 379
13.6. Simple Exponential and Quasi-Steady-State Solutions to ODEs 380
13.7. Multistep Implicit–Explicit (MIE) Solution to ODEs 381
13.8. Gear’s Solution to ODEs 385
13.9. Family Solution to ODEs 393
13.10. Summary 396
13.11. Problems 397
13.13. Modeling Project 399

14 Particle Components, Size Distributions, and Size Structures 400
14.1. Effects of Particles 400
14.2. Aerosol, Fog, and Cloud Composition 403
14.3. Discrete Size Distributions 404
14.4. Continuous Size Distributions 409
14.5. Evolution of Size Distributions Over Time 416
14.6. Summary 421
14.7. Problems 422
14.8. Computer Programming Practice 422

15 Aerosol Emissions and Nucleation 423
15.1. Emissions 423
15.2. Nucleation 426
15.3. Summary 434
15.4. Problems 434
15.5. Computer Programming Practice 435

16 Coagulation 436
16.1. Fully Implicit Coagulation 436
16.2. Semiimplicit Coagulation 438
16.3. Coagulation over Multiple Particle Distributions 440
16.4. Coagulation Kernel 442
16.5. Comparison with Analytical Solutions 448
16.6. Application of Coagulation Equations 450
16.7. Summary 451
Contents

16.8. Problems 451
16.9. Computer Programming Practice 451

17 Condensation, Evaporation, Deposition, and Sublimation 453
17.1. Fluxes To and From a Single Drop 453
17.2. Corrections to Growth Parameters 456
17.3. Fluxes to a Particle with Multiple Components 465
17.4. Fluxes to a Population of Particles 466
17.5. Solutions to Growth Equations 467
17.6. Effects of Condensation on Coagulation 472
17.7. Ice Crystal Growth 473
17.8. Summary 474
17.9. Problems 474
17.10. Computer Programming Practice 475

18 Chemical Equilibrium and Dissolution Processes 476
18.1. Definitions 476
18.2. Equilibrium Equations and Relations 477
18.3. Temperature Dependence of the Equilibrium Coefficient 483
18.4. Forms of Equilibrium-Coefficient Equations 484
18.5. Mean Binary Activity Coefficients 486
18.6. Temperature Dependence of Mean Binary Activity Coefficients 488
18.7. Mean Mixed Activity Coefficients 490
18.8. The Water Equation 491
18.9. Example Equilibrium Problem 495
18.10. Method of Solving Equilibrium Equations 496
18.11. Solid Formation and Deliquescence Relative Humidity 498
18.12. Equilibrium-Solver Results 500
18.13. Nonequilibrium between Gas and Particle Phases 501
18.14. Solution to Growth Equations for a Soluble Species 505
18.15. Simulations under Atmospheric Conditions 506
18.16. Summary 508
18.17. Problems 509
18.18. Computer Programming Practice 509

19 Aqueous Chemistry 511
19.1. Significance of Aqueous Chemical Reactions 511
19.2. Common Reactions 514
19.3. Diffusion within a Drop 519
19.4. Solving Growth and Aqueous Chemical ODEs 520
19.5. Summary 524
Contents

19.6. Problems 524
19.7. Computer Programming Practice 525

20 Sedimentation and Dry Deposition 526
20.1. Sedimentation 526
20.2. Dry Deposition 529
20.3. Dry-Deposition and Sedimentation Calculations 534
20.4. Summary 536
20.5. Problems 536
20.6. Computer Programming Practice 537

21 Model Design, Application, and Testing 538
21.1. Steps in Model Formulation 538
21.2. Example Model Simulations 553
21.3. Summary 559
21.4. Problems 559
21.5. Computer Programming Practice 559

Appendix A Conversions, Constants, and Symbols 561
A.1. Conversions and Constants 561
A.2. List of Symbols 563

Appendix B Tables 577
B.1. Standard Atmospheric Variables versus Altitude 577
B.2. Solar Irradiance at the Top of the Atmosphere 578
B.3. Gas-Phase Species 579
B.4. Gas-Phase Reactions 591
B.5. Equilibrium and Aqueous-Chemistry Species 601
B.6. Thermodynamic Data 602
B.7. Equilibrium Reactions 603
B.8. Aqueous-Phase Reactions 605
B.9. Solute Activity Coefficient Data 608
B.10. Water Activity Data 610
B.11. Surface Resistance Data 611
B.12. More Surface Resistance Data 612

References 613
Index 635

Additional information concerning the book can be found on the author's web site at:

This site contains downloadable color overhead slides for the whole text and information about obtaining an answer key. The publisher accepts no liability for loss or damage of any kind resulting from the use of the material on this web site.
Preface

Modern atmospheric science is a field that combines meteorology, physics, mathematics, chemistry, computer sciences, and to a lesser extent geology, biology, microbiology, and oceanographic sciences. Until the late 1940s scientific studies of the atmosphere were limited primarily to studies of the weather. At that time, heightened concern about air pollution caused a surge of atmospheric chemistry studies, and computer modeling of meteorology and air pollution commenced. Since the late 1940s, the number of meteorological and air-pollution studies has increased rapidly, and meteorological and air-pollution models have slowly merged.

BRIEF HISTORY OF METEOROLOGICAL SCIENCES

The history of atmospheric sciences begins with weather forecasting. Forecasting originally grew out of three needs — for farmers to produce crops, sailors to survive at sea, and populations to avoid weather-related disasters such as floods. Every society has forecast wind, rain, and other weather events. Some forecasts are embodied in platitudes and lore. Virgil stated, “Rain and wind increase after a thunderclap.” The Zuni Indians had a saying, “If the first thunder is from the east, winter is over.” Human experiences with the weather have led to more recent forecast rhymes, such as, “Rainbow in morning, sailors take warning. Rainbow at night, a sailor’s delight.”

Primitive forecasts have also been made based on animal and insect behavior or the presence of a human ailment. Bird migration was thought to predict oncoming winds. This correlation has since proved unreliable. Rheumatism, arthritis, and gout have been associated with the onset of rain, but such ailments are usually unrelated to the weather. The presence of locusts has correctly been associated with rainfall in that locusts fly downwind until they reach an area of converging winds, where rain is likely to occur.

In the 1870s, forecasting based on observations and experience became a profession. Many felt that early professional forecasting was more of an art than a science, since it was not based on scientific theory. Although the number of data available to forecasters was large and increasing, the data were not always used. Data were gathered by observers who used instruments that measured winds, pressure, temperature, humidity, and rainfall. Many of these instruments had been developed over the previous two centuries, although ideas and crude technologies existed prior to that time.
Preface

The Greeks, around 430 B.C., may have been the first to measure winds. Yet, reliable instruments to measure wind force and direction were not developed until the seventeenth century. In 1667 Robert Hooke developed the pressure-plate anemometer, which measured the deflection and force of wind on a sheet of metal hanging vertically. This principle was used again in the pressure-tube anemometer, thought of earlier but not built until the 1740s. Windmills were used as early as 644 A.D. in Persia, but the first cup anemometer, which applies the principle of the windmill to measure wind speed, was not developed until the seventeenth century, in France. In the nineteenth century, additional work on the anemometer was carried out by T. R. Robinson and W. H. Dines.

The mercury barometer, used to measure air pressure, was invented in 1643 by Evangelista Torricelli (1608–1647), an associate of Galileo Galilei (1564–1642). Toricelli invented the barometer (Encyclopedia Britannia 1980)

to make an instrument which might show the changes of the air, now heavier and coarser, now lighter and more subtle.

By 1663, the Royal Society of London had built its own barometer based on Torricelli’s model. The aneroid barometer, which represented an advance over the mercury barometer, was not adequately developed until 1843. The aneroid barometer contains no fluid. Instead, it measures pressure by gauging the expansion and contraction of a tightly sealed metal cell that contains no air.

A third important invention for meteorologists was the thermometer. Prior to 1600, Galileo devised the thermoscope, which measured the expansion of air to estimate temperature changes. The instrument did not have a scale and was unreliable. Torricelli’s mercury barometer, which contained fluid, led to the invention of the liquid-in-glass thermometer in Florence by the mid–seventeenth century. In the early eighteenth century, useful thermometer scales were developed by Gabriel Daniel Fahrenheit of Germany (1686–1736) and Anders Celsius of Sweden (1701–1744).

A fourth important invention was the hygrometer, which measures humidity. Leonardo da Vinci (1452–1519) was probably the first to implement a hygrometer. He based his idea on notes of Nicolas Cryffs, who suggested in 1450 that a hygroscope could be constructed with dried wool placed on a scale. The change in weight of the wool would give a rough idea of the change in humidity. Wood and seaweed were used later in place of wool. In the seventeenth century, gut, string, cord, and hair were also used to measure humidity, since the change in length of these materials with humidity could be measured crudely. The hair hygrometer is still used today, although another instrument, the psychrometer, is more accurate. A psychrometer consists of two liquid-in-glass thermometers mounted together, one with a dry bulb and the other with a bulb covered with a moistened cloth.

Following the inventions above, observations of pressure, temperature, humidity, wind force, wind direction, and rainfall became regular. By the nineteenth century, weather-station networks and meteorological tables were common. Observers
Preface

gathered data and forecasters used the data to predict the weather, but neither observers nor forecasters applied significant theory in their work. Theoreticians studied physical laws of nature but did not take advantage of the abundance of data available.

One of the first weather theoreticians was Aristotle, who wrote *Meteorologica* about 340 B.C. In that text, Aristotle attempted to explain the cause of winds, clouds, rain, mist, dew, frost, snow, hail, thunder, lightning, thunderstorms, halos, rainbows, and mock suns. On the subject of winds, he wrote (Lee 1951)

> These, then, are the most important different winds and their positions. There are two reasons for there being more winds from the northerly than from the southerly regions. First, our inhabited region lies towards the north; second, far more rain and snow is pushed up into this region because the other lies beneath the sun and its course. These melt and are absorbed by the earth and when subsequently heated by the sun and the earth's own heat cause a greater and more extensive exhalation.

On the subject of thunder, he wrote,

> Let us now explain lightning and thunder, and then whirlwinds, firewinds and thunderbolts: for the cause of all of them must be assumed to be the same. As we have said, there are two kinds of exhalation, moist and dry; and their combination (air) contains both potentially. It condenses into cloud, as we have explained before, and the condensation of clouds is thicker towards their farther limit. Heat when radiated disperses into the upper region. But any of the dry exhalation that gets trapped when the air is in process of cooling is forcibly ejected as the clouds condense and in its course strikes the surrounding clouds, and the noise caused by the impact is what we call thunder.

Aristotle's monograph established a method of qualitatively explaining meteorological problems. Since Aristotle was incorrect about nearly all his meteorological conclusions, *Meteorologica* was never regarded as a significant work. Aristotle made observations, as evidenced by diagrams and descriptions in *Meteorologica*, but he did not conduct experiments. Lacking experiments, his conclusions, while rational, were not scientifically based.

Aristotle's method of rationalizing observations with little or no experiment governed meteorological theory through the seventeenth century. In 1637, René Descartes (1596–1650) wrote *Les Météores*, a series of essays attached to *Discours de la Méthode*. In some parts of this work, Descartes improved upon Aristotle's treatise by discussing experiments. In other parts, Descartes merely expanded or reformulated many of Aristotle's explanations. On the subject of northerly winds, Descartes wrote (Olscamp 1965)

> We also observe that the north winds blow primarily during the day, that they come from above to below, and that they are very violent, cold and dry. You can see the explanation of this by considering that the earth EBFD [referring to a diagram] is covered with many clouds and mists near the poles E and F, where it is hardly heated by the sun at all; and that at B, where the sun is immediately overhead, it excites a
Preface

quantity of vapors which are quite agitated by the action of its light and rise into
the air very quickly, until they have risen so high that the resistance of their weight
makes it easier for them to swerve, . . .

Like Aristotle, Descartes was incorrect about many explanations. Despite some
of the weaknesses of his work, Descartes is credited for being one of the first in
meteorological sciences to form hypotheses and then to conduct experiments.

Between the seventeenth and mid-nineteenth centuries, knowledge of basic
physics increased, but mathematics and physics were still not used rigorously to
explain atmospheric behavior. In 1860, William Ferrel published a collection of
papers that were the first to apply mathematical theory to fluid motions on a
rotating earth. This work was the impetus behind the modern-day field of dy-
namical meteorology, which uses physics and mathematics to explain atmospheric
motion.

Between 1860 and the early 1900s weather forecasting and theory advanced
along separate paths. In 1903, Vilhelm Bjerknes of Norway (1862–1951) promul-
gated the idea that weather forecasting should be based on the laws of physics. This
idea was not new, but Bjerknes advanced it further than others (Nebeker 1995).
Bjerknes thought that weather could be described by seven primary variables –
pressure, temperature, air density, air water content, and the three components of
wind velocity. He also realized that many of the equations describing the change in
these variables were physical laws already discovered. Such laws included the con-
tinuity equation for air, Newton’s law of motion, the ideal-gas law, the hydrostatic
equation, and the thermodynamic energy equation.

Bjerknes did not believe that prognostic meteorological equations could be
solved analytically. He advocated the use of physical principles to operate on
graphical observations to forecast the weather. This technique was called graphical
calculus. Between 1913 and 1919, Lewis Fry Richardson (1881–1953), developed
a different method of analyzing the equations describing the weather (Richardson
1922). The method involved simplifying the equations before solving them nu-
merically by hand. Richardson was not satisfied, because data available to test his
method were sparse, and predictions from his method were not accurate. Nev-
evertheless, his was the first attempt to numerically predict the weather in detail
(ibid.).

Until the 1940s, much of Richardson’s work was ignored because of the lack
of a means to carry out the large number of calculations required to implement
his method. In 1946, John von Neumann (1903–1957), who was associated with
work to build the first electronic computer, proposed a project to make weather
forecasting its main application. The project was approved, and the first computer
model of the atmosphere was planned. Among the workers on von Neumann’s
project was Jule Charney, who became director of the project in 1948. Charney
made the first numerical forecast on the computer, ENIAC, with a one-dimensional
model. Since that time, numerical models of weather prediction have become more
elaborate, and computers have become faster.
Preface

BRIEF HISTORY OF AIR-POLLUTION SCIENCES

Meteorological science is an old and established field; air-pollution science has a shorter history. Natural air pollution has occurred on earth since the planet's formation. Fires, volcanic eruptions, meteorite impacts, and high winds all cause natural air-pollution. Human-made air-pollution problems have existed on urban scales for centuries and have resulted from burning of wood, vegetation, coal, oil, natural gas, waste, and chemicals.

Before the twentieth century, air pollution was not treated as a science but as a regulatory problem (Bouel et al. 1994). In Great Britain, emissions from furnaces and steam engines led to the Public Health Act of 1848. Emissions of hydrogen chloride from soap making led to the Alkali Act of 1863. In both cases, pollution abatement was controlled by agencies. In the nineteenth century, pollution abatement in the United States was delegated to municipalities. Regulations did not reduce pollution much, but they led to pollution control technologies, such as the scrubber for removing effluent gases from smokestacks and, later, the electrostatic precipitator for reducing particulate emissions from them.

Inventions unrelated to air-pollution regulation reduced some pollution problems. In the early twentieth century, the advent of the electric motor centralized sources of combustion at electric utilities, reducing local air pollution caused by the steam engine.

At the same time, widespread use of automobiles and other combustion processes increased pollution, especially in urban regions. Most noticeable was a layer of pollution that formed almost daily in Los Angeles, California. This pollution became so serious that an Air Pollution Control District was formed in Los Angeles in 1947. In 1949, the first National Air Pollution Symposium was held in Los Angeles. In 1951, Arie Haagen-Smit produced ozone in a laboratory from oxides of nitrogen and reactive organic gases, in the presence of solar radiation, and he suggested that these gases were the main constituents of Los Angeles air pollution. Such pollution became known as photochemical smog. Photochemical smog, due primarily to automobile emissions, has since been observed in most cities of the world.

The term smog was first coined in 1905 by Harold Antoine Des Voeux, who described the combination of smoke and fog he observed in cities in Great Britain. The smoke was due to chimney and stack emissions of coal combustion products. In December 1952, such smog resulted in over 4000 deaths in London. This fatal episode was not the first in London. Pollution resulting from coal combustion in the presence of fog is commonly referred to as London-type smog.

THE MERGING OF AIR-POLLUTION AND METEOROLOGICAL SCIENCES

In the 1950s, laboratory work was undertaken to better understand the formation of photochemical and London-type smog. Since the computer was already available, box models simulating atmospheric chemical reactions were immediately
Preface

implemented. Between the 1950s and 1970s, air-pollution models, termed air-quality models, were expanded to three dimensions. Such models included treatment of transport, deposition, emissions, and gas chemistry. Most of these models used observed meteorological data as inputs. More recently, air quality models have used meteorological fields, either precalculated or calculated in real time, as inputs.

In the 1970s, atmospheric pollution problems, aside from urban air pollution, were increasingly recognized. Such problems included regional acid deposition, global ozone reduction, Antarctic ozone depletion, and global climate change. Initially, ozone depletion and climate change problems were treated separately by dynamical meteorologists and atmospheric chemists. More recently, computer models that incorporate atmospheric chemistry and dynamical meteorology have been used to study these problems.

The purposes of this book are to provide (1) a physical understanding of dynamical meteorology, gas chemistry, aerosol microphysics and chemistry, radiation, and cloud processes in the atmosphere, (2) a description of numerical methods and computational techniques used to simulate these processes, and (3) a catalog of steps required to construct, apply, and test a numerical model.

After the overview in the first chapter, atmospheric structure, composition, and thermodynamics are described in Chapter 2. In Chapters 3–5, basic equations describing dynamical meteorology are derived. In Chapter 6, numerical methods of solving partial differential equations are discussed. A finite-difference technique of solving dynamical meteorological equations is provided in Chapter 7. In Chapters 8 and 9, boundary-layer and cloud processes, respectively, are described. Chapter 10 introduces radiation. Chapters 11–13 focus on photochemistry and numerical methods of solving chemical equations. Chapters 14–19 describe aerosol physical and chemical processes. Chapter 20 describes sedimentation and dry deposition. Chapter 21 outlines computer model development, application, and testing.

The book is designed as a graduate, upper-level undergraduate, and research text. The text assumes students have a basic physical science, mathematical, and computational background. Both Système Internationale (SI) and centimeter-gram-second (CGS) units are used. Dynamical meteorologists often use SI units, and atmospheric chemists often use CGS units. Some chemical variables, such as gas concentrations, absorption cross sections, and rate coefficients, are most conveniently written in CGS units. Some meteorological variables, such as wind speed, geopotential, and energy, are most conveniently written in SI units. Thus, both unit systems are retained. Unit and variable conversions are given in Appendix A.

ACKNOWLEDGMENTS

I would like to thank several colleagues who reviewed different sections of this text. In particular, I am indebted to (in alphabetical order) Akio Arakawa, Bob Chatfield, Frank Freedman, Ann Fridlind, James Holton, Daniel Jacob, Jinyou Liang, Jin-Sheng Lin, Gerard Ketefian, Doug Rotman, Roberto San Jose, Hanwant Singh, Amy Stuart, Azadeh Tabazadeh, Roland von Glasow, and Don Wuebbles, who all provided significant comments, suggestions, and/or corrections relating to the text.