Author index

Abendroth, H., 461
Adair, I. V., 181
Adams, F. D., 410
Alfrey, T., Jr., 103
Archbold, E., 410, 427
Armstrong, G. W. D., 181
Asundi, A., 432, 433
Austin, S., 165, 248

Baracat, W. A., 270, 313
Bar-Ziv, E., 191
Basehorse, M. L., 301, 324, 326
Bayer, M. H., 164, 166, 246, 254, 313, 316, 317
Beidermann, K., 453
Boone, P., 432
Born, M., 14, 16, 40, 43, 46, 61, 63, 64, 196
Bradley, W. A., 182
Brčič, V., 388
Brooks, R. E., 344, 410
Brown, I. C., 324
Brown, G. W., 344, 387
Burch, J. M., 162, 236, 401, 410, 431, 432
Butters, J. N., 410, 453, 454, 462

Carré, P., 488
Cesarz, W., 172
Chen, X. L., 393, 473
Chiang, F. P., 157, 179, 182, 227, 243, 263, 432, 433
Clutterbuck, M., 121
Coker, E. G., 16, 61, 64, 116
Conley, E. G., 433, 435, 436
Cookson, T. J., 462
Creath, K., 393, 477, 481, 483, 490
Czarnek, R., 280

Dainty, J. C., 410
Dally, J. W., 64, 77, 101, 128, 143, 147, 151, 157
Daniel, I. M., 103, 263
Dantu, M., 147, 167
Der Hovanesian, J., 184, 187, 189, 388, 410
DeBacker, L., 432
Duffy, D., 410, 428
Durelli, A., 148, 153, 263

Eggers, H., 461
Ek, L., 453
Eliaisson, B., 410
Ennos, A. E., 365, 395, 400, 401, 402, 410, 427, 440, 451
Erf, R. K., 387
Erisman, E. R., 128

Falco, R., 432
Filon, L. N. G., 16, 61, 64, 116
Forno, C., 162, 236, 237, 431, 432
Fourney, M. E., 388
Frocht, M. M., 64, 77, 91, 114

Gabor, D., 343, 344
Garbuny, M., 16, 117
Glatt, I., 191
Author index

Goodman, J. W., 196, 346, 395, 397, 399, 400
Greivenkamp, C. J., 485
Groh, G., 410
Guild, G., 227, 273
Guo, Y., 333, 338

Haines, K. A., 344
Han, B., 157, 270, 304, 313, 323, 333, 338
Harding, K., 189
Hariharan, P., 346
Harris, F. C., 60, 62, 77, 91, 140
Harris, J. S., 189
Haskell, R. E., 48, 196, 217, 346
Heffinger, L. O., 344, 410
Hermann, R., 165, 166, 246, 248
Hildebrand, B. P., 344
Hagemoen, K., 453, 462, 463
Holister, G. S., 163, 246, 248
Horman, M. H., 344
Hu, C., 410
Hu, H. Z., 481
Hung, Y. Y., 184, 187, 189, 410
Hyzer, J. B., 334, 339

Ifft, P. G., 157, 270, 304, 313, 323

James, J. F., 275
Jessop, H. T., 60, 62, 77, 91, 140
Jones, R., 346, 374, 393, 395, 400, 404, 405, 410, 440, 444, 445, 447, 448, 453, 454, 472

Kafri, O., 191
Kao, T. Y., 182
Kerber, R. C., 263
Keren, E., 191
Khentan, R. P., 187, 188
Köpf, U., 410

Leek, J., 172
Leendertz, J., 410, 447, 453
Leith, E. N., 344
Li, D., 433

Lichtenberg, F. K., 182
Lökberg, O. J., 453, 462, 463
Lu, B., 461
Luxmoore, A. R., 163, 165, 166, 246, 248

Macovské, A., 453
Maddux, G. E., 410
McDonach, A., 270, 313
McKelvie, J., 174, 270, 313, 324
MacLaughlin, T. F., 227
Mesmer, G., 98
Moga, P. J., 190, 191
Morse, S., 148
Mottier, F., 410

Nokes, J., 457, 461, 473
Oster, G., 148

Paleebut, S., 242, 263, 264, 432, 433
Parks, V. J., 148, 153, 157, 179, 184, 427
Peiffer, J., 165, 246, 432, 433
Perry, S. H., 324
Peters, W. H., 374
Pollard, H. C., 462
Powell, R. L., 344, 388

Radke, R., 165, 246, 432, 433
Ramsey, S. D., 453
Ranson, E. F., 374
Richard, T. S., 174
Riley, W. F., 64, 77, 101, 143, 147, 148, 151, 157
Rowlands, R. E., 174

Schaefer, L. F., 453
Shagam, R. N., 481
Sharpe, W. N., Jr., 45
Shurtleff, W. A., 25, 28
Sikarskie, D., 313
Slettemoen, G. A., 465
Smith, H. M., 346, 374, 376
Sternberg, R. S., 275
Stone, F. T., 165, 248
Straka, P., 246
Stroke, G. W., 275, 346
Sulaimana, R., 242, 254
Sutton, M. A., 374
Takasaki, H., 179
Taylor, C. E., 410
Taylor, D., 410
Theocaris, P. S., 103, 148, 151, 179
Tiziani, H., 410
Tokarski, J. M. J., 410
Tolansky, S., 40, 43, 46, 47
Upatnieks, J., 344

Vable, M., 313
Van Wijk, M. C., 181
Varner, J. R., 389
Voloshin, A. S., 174
Walker, C., 270, 313, 323, 324, 334, 339
Wasserman, M., 148
Waters, J. P., 346, 374
Whittier, J. G., 263
Wolf, E., 14, 16, 40, 43, 46, 61, 63, 64, 196
Wolf, H., 64, 77
Wuerker, R. F., 344
Wyant, J. C., 481, 488
Wykes, C., 346, 374, 393, 395, 400, 404, 405, 410, 440, 444, 445, 447, 448, 453, 454, 472
Yang, X., 461
Zandman, F., 163, 165
Zwerling, C., 148
Subject index

absolute retardation, 59
Airy disc, 398; see also diffraction by clear aperture; laser speckle analogs, 130
coloring paper analogy, 131
electro-optic fluid, 131
membrane analogy, 130
aperture, see diffraction by clear aperture
birefringence, 59
dielectric tensor, 61
Fresnel ellipsoid, 62
principal axes of, 60, 63
principal values of, 61
refractive index ellipsoid, 63
birefringence in materials, 64, 102
circular polariscope, 75
coherent optical data processing, see spatial filtering
complex amplitude, 23
complex variables, 22
computer data reduction, see moire with optical processing
creep and relaxation tests, 104
creep coefficients, optical and mechanical, 115
diffraction at an aperture
arbitrary aperture, 217
basic concept, 37
Fourier transform, 37
see also diffraction by clear aperture; diffraction theory; holography
diffraction by clear aperture, 207
Airy disc, 209–10
holography and moire, 212
large aperture case, 211–12
misuse of Fraunhofer equation, 211
sinc function, 209
small aperture case, 210–11
transmittance function, 208
diffraction by grating, 212
orders, 215
transmittance function, 213
see also moire interferometry; speckle photography
diffraction by hologram, see holography
diffraction by lens, 215
Fresnel integral equations, 217–19
optical Fourier transform, 219–21
scaling factor, 217
diffraction by superimposed gratings, 227
Fourier transform model, 233
fringe formation, 230
higher orders, 230
moire pattern, 229
and sensitivity multiplication in moire, 233
sine grating, 227
whole-field, 229–30
diffraction theory, 195
Fourier transform, 206, 219–21
Fraunhofer approximations, 203, 206–7
Fraunhofer diffraction integral, 206–7
Fraunhofer equation, 206
Fresnel approximation, 203–5
Fresnel integral, 205
Fresnel–Kirchhoff formula, 201
Helmholtz equation, 197
Helmholtz–Kirchhoff formula, 200
Huygens–Fresnel construction, 195
Kirchhoff assumptions, 200
Kirchhoff integral, 197–201
plane wavefront case, 201
Subject index

problem identification, 195
Stokes theorem, 197
transparency in aperture, 201
see also diffraction by clear aperture;
diffraction by grating; diffraction by lens; diffusion by superimposed gratings; pinhole spatial filter; spatial filtering
dispersion, 116
of birefringence, 117
normalized dispersion of birefringence, 118
normalized retardation, 117
optical, 116
Doppler effect, 48
electromagnetic spectrum, 19
electronic holography, see electronic speckle pattern interferometry
electronic speckle pattern interferometry
advantages, 470–1
basic concept, 454
Bessel function, 461
camera, 456
camera resolution, 464
correlation fringe formation, 457
depth of field, 472
dynamic measurement, 463
error sources, 473
frequency response of monitor, 465
fringe brightness, 459–61
fringes by addition, 459–60
fringes by subtraction, 457–9
fringe visibility optimization, 467, 469
generic system, 454
light intensity optimization, 463–4
limitations, 471–3
in nondestructive inspection, 473
object size, 471
optical setups, 455–6
phase relations, 458–61
practical system, 474
resolution for smooth reference beam, 467
resolution for two speckle beams, 466
resolution limitations summary, 469
sample results, 458
sensitivity, 471
spatial resolution, 464–70
speckle size, 464
surface condition, 472
time-average fringes, 461–3
vibration measurement, 461–3
video system, 456
see also phase shifting interferometry;
speckle interferometry
embedded grating, see moire with optical processing
enhanced moire, see moire with optical processing
ESPI, see electronic speckle pattern interferometry; phase shifting interferometry
extraordinary ray, 62
Fourier optical processing, 227; see also
diffraction by lens; spatial filtering
Fourier optics, see diffraction theory
Fourier transform, see diffraction theory
fractional fringe order
Babinet–Soleil compensator, 141
birefringent compensator, 141
phase shifting, 140, 477
Senarmont method, 138–40
summary of methods, 135
Tardy method, 136
Fresnel diffraction integral, see diffraction theory
fringe visibility, 35
geometric moire
creating gratings and grids, 163
direct superimposition, 159
double exposure, 161–2
fringe formation, 148
fringe order-displacement-rotation, 148
in-plane motion and strain, 155
observing techniques, 159
optical superimposition, 162–3
pitch mismatch, 179
rotation effects, 169
sensitivity, 173
sensitivity improvement, 174
sensitivity multiplication, 161
slope, contour, out-of-plane displacement, 179
strain rosette, see moire strain rosette
two-dimensional strain analysis, 166
see also moire, moire pitch mismatch,
projection moire, reflection moire, shadow moire
grating photography, 161
with slotted apertures, 161, 175
see also slotted apertures
harmonic grating, see diffraction by grating
harmonic wave, 18
holographic interferometry
 basic concepts, 345
 basic rules, 374
 Bessel function, 363
 contour fringes, 360
 contour mapping, 389
 dependence on viewing and illumination angles, 369
 displacement, in-plane, 368
 displacement, out-of-plane, 364, 368
 double exposure, 356
 fringe interpretation, 357, 360, 363, 364
 fringe localization, 370–2
 frozen fringe method, 356
 holographic photoelasticity, 388
 line-of-sight displacement, 364
 live fringe method, 358
 qualitative interpretation, 363–4
 real-time method, 358
 sensitivity vector, 365–70
 small-angle approximation, 369
 small viewing aperture, 371
 time-average method, 360
 see also holography
holographic interferometry techniques
 developing in place, 385
 double exposure procedures, 384–5
 in nondestructive testing, 387
 optical setups, see holography
 real-time plateholder, 386
 real-time procedure, 385–6
 refractive index change in contouring, 389
 time-average procedure, 386
 two wavelengths for contouring, 389
 wet plate holder, 386
holography
 basic ideas, 344–5
 carrier fringes, 355
 conjugate beam, 352
 diffraction theory, 353
 equations, 348–51
 Fraunhofer integral, 353
 history, 343
 hologram as diffraction grating, 354–5
 hologram as transmittance filter, 350–3
 holographic lens, 355
 image reconstruction equations, 349–54
 images, 351–2
interference of reference and object beams, 347
primary beam, 351
producing a hologram, 346
pseudoscopic image, 352
reconstruction as diffraction process, 353
recording equations, 349
recording geometry, 347
see also holographic interferometry
holography techniques
 films and plates, 382–3t
 holographic platform, 375
 image plane holography, 390
 multiple object beams, 378
 optical setups, 376–8
 phase objects, 378
 photoresists, 384
 recording media, 381–4
 recording procedure, 379–81
 spatial filter, 377
 tables, 375
 thermoplastic recording media, 384
 viewing procedure, 379–81
Huygens construction, 44, 271
index of refraction: correction for, in three-dimensional measurements, see moire with optical processing
intensity of light, 24
interference
 of collinear waves, 31
 constructive, 32
 destructive, 32
 fringes, 34
 fringe spacing, 36
 phase–irradiance equations, 34
 of two plane waves, 32–6
interference of two beams, see holography; interference; moire interferometry
interferometer, generic, 38
interferometric measurement of birefringence, 66
common retardation, 72
fringe patterns, 71
see also photoelasticity; photoelasticity equations
interferometric strain gage, 45
interferometry, classical, 40
irradiance, 24
Subject index

isochromatic fringes, 72, 92
fringe order, 95
interpretation, 95–6
recording, 92
isoclinic fringes, 72, 88
interpretation, 90
recording, 88
Kirchhoff integral, see diffraction theory
laser Doppler interferometry, 47
beat frequency, 51
interpretation of signal, 51
laser speckle
brightness distribution, 399–400
coherent and incoherent mixing of, 401–2
coherent combinations of, 400
decorrelation by in-plane rotation, 407–8
decorrelation by in-plane translation, 406–7
decorrelation by out-of-plane tilt, 407
decorrelation by out-of-plane translation, 405–6
decorrelation criteria, 405
fully developed pattern, 399
Gaussian speckle, 399
memory loss, 404
objective speckle, 397
phase decorrelation, 404
polarization effects, 402
probability functions, 400–2
sensitivity vector, 408
signature of surface, 403
speckle correlation metrology, 403–4
speckle decorrelation, 403–4
speckle effect, 395–6
speckle photography, 403
speckle size, 397–9
subjective speckle, 397–9
lens as Fourier analyzer, see diffraction by lens
light, 13
quantum model, 14
wave model, 13
linear polariscope, 66
mathematical approaches, 21
Fourier transforms, 22
see also complex amplitude; matrix methods
matrix methods, 25
Jones calculus, 27
Mueller calculus, 25
Stokes vector, 25, 27
Maxwell’s equations, 14
Michelson interferometer, 46
model similarity and scaling
basic concepts, 99
Buckingham’s theorem, 122
material properties, 120
Mitchell’s conditions, 121
multiply connected regions, 120
scaling law, 123
simply connected regions, 120
size and load scaling, 122
moire
equations, 150–1
fringe-displacement-strain, 148–52
fringes, 148
optical Fourier processor, 235
parametric description, 148
rigid body motion measurement, 155
whole field analysis, 152
see also diffraction by superimposed gratings; geometric moire; moire interferometry; moire with optical processing; slotted apertures
moire effect, 147
moire fringe patterns by optical processing, 234
moire fringes, 152
moire in interior of specimen, see moire with optical processing
moire interferometer
adjustment, 319
construction, 314
design objectives, 313
mirror orientation, 317
optical scheme, 315
three-axis six-beam apparatus, 315
moire interferometry
analysis of two-dimensional field, 301
concepts, 269
definitions, 273
deformation of specimen grating, 282
diffraction by grating, 271
frequency of specimen grating, 281
fringe formation, 287
fringe order–displacement relation, 289
general grating equation, 273
geometry of interferometer, 280
grating equations, 272, 273, 277
Subject index

moire interferometry—continued
 Huygens construction, see Huygens construction
 interference and diffraction, 269
 pitch mismatch, 304–11
 pitch mismatch in strained specimen, 307
 pitch mismatch in undeformed specimen, 304
 shear strain determination, 302
 sign convention, 278
 six-beam three-axis layout, 281
 strain rosette, 302
 three-dimensional grating equations, 277
 two-beam interference in, 278
 virtual grating, 270

moire interferometry fringes
 of 45°-displacement, 295
 of x-displacement, 284
 of y-displacement, 295
 produced by in-plane rotation, 283, 296
 produced by normal strain, 285
 produced by normal strain, \(\epsilon_x \), 295
 produced by normal strain, \(\epsilon_y \), 289
 produced by normal strain, \(\epsilon_y \), 298
 produced by out-of-plane rotation, 293, 301
 produced by shear strain, \(\gamma_{xy} \), 291
 produced by shear strain, \(\gamma_{x'y'} \), 298
 rotation effects, 312

moire interferometry techniques
 data reduction, 331
 experimental methods, 323
 fringe recording, 328
 grating replication, 328
 grid transfer method, 324
 sample results, 331–9
 specimen gratings, 323
 transfer molding, 324

moire of moire, 153

moire with optical processing advantages, 241
 computer data reduction, 259
 digitizing fringes, 257–9
 fringe data reduction, 253
 fringe patterns, 251
 grating focus, 250
 gratings, master and submaster, 243–6
 gratings for specimens, 246; see also photoresists
 multiple embedded gratings, 263
 normal strain parallel to axis, 257
 normal strain perpendicular to axis, 259
 numerical data reduction, 256
 optical processing, 252
 photography of specimen gratings, 249
 procedure summary, 242
 refractive index correction, 264
 sample results, 262
 spatial filtering, 252
 technique outline, 242
 three-dimensional analysis, 263
 moire pitch mismatch, 175; see also moire interferometry, moire with optical processing
 moire strain analysis, concept, 156
 moire strain rosette, 167, 171, 172
 momentarily linearly elastic, 105

Newton’s rings, 40
 equation, 42
 noncoherent light speckle, see white light speckle photography

optical spatial filtering, see moire with optical processing; spatial filtering ordinary ray, 62

path length difference, 38, 44

phase measurement interferometry, see phase shifting interferometry

phase shifting interferometry
 algorithms, 483–90
 background, 477
 basic concepts, 478–82
 Carré technique, 488–9
 detector output plot, 480
 displacement from phase, 491
 four-step technique, 488
 integrating bucket technique, 484
 intensity–phase relations, 485–7
 interferometric experiment, 479
 modulation optimization, 483–4
 phase measurement techniques, comparison, 489
 phase shift concept, 480–1
 phase shift methods, 481–3
 phase-stepping technique, 484
 phase unwrapping, 489–90
 piezoelectric transducer, 481–2
 precision, 481
 sampling problem, 483
 setup, 482
 three-step technique, 487
phase stepping interferometry, see phase shifting interferometry
photoelastic coefficients, 65; see also strain–optic coefficient; stress–optic coefficient
photoelasticity
color sequence, 98t
compensation, see phase shifting interferometry; fractional fringe order
nonmonochromatic light, 95–6
separating isoclinics and isochromatics, 97–8
whole-field, 72
see also birefringence; holographic interferometry; photoelasticity equations; photoelasticity theory; polariscope optics; reflection photoelasticity; three-dimensional photoelasticity approaches
photoelasticity equations, 67
dark field linear, 70
interpretation of, 69
light field linear, 70
see also interferometric measurement of birefringence, photoelasticity theory
photoelasticity theory, 57
photoelastic material calibration
beam bending test, 113
creep coefficients, 115
disc in compression, 113
laboratory tips, 114
minimum requirements, 103
stress optical coefficient, 107	
tapered specimen, 112
tensile creep test, 110
tension test, 109
time effects, 102
typical result, 107
see also dispersion
photoelastic models, 85
photoelastic model similarity, see model similarity and scaling
photoelastic polariscope, 77
photoelastic stress separation, see stress separation
photoresists, 246
specimen grating, 248
pinhole spatial filter, 223
adjustment of, 225
polariscope calibration, 83
polariscope optics, 77
collimator, 78
light source, 77
monochromatic radiation sources, 78t
polarizers, 78
quarter-wave plates, 79
typical setups, 79–83
polarization, 20
circular, 21, 74
linear, 21
random, 21
projection moire
biomechanical applications, 187, 189–91
coherent beams to create grating, 189
contour changes by, 189–91
contour difference by, 186–91
differential moire, 190–1
in fluid mechanics, 191
fringe interpretation, 186
lateral motion effect, 186
nonparaxial equations, 187–8
optical arrangement, 185
time average, 189
quarter-wave plates, 74
reflection moire, 182
fringe formation, 183
fringe–slope relation, 183
reflection photoelasticity, 141
refraction, 58
absolute index, 58
relative index, 58
relative retardation, 64
fringe order, 64
sensitivity vector, see speckle interferometry
shadow moire, 179
fringe formation, 180
fringe interpretation, 181
slotted apertures
grating frequency multiplication, 239
in grating photography, 235
moire from random patterns, 236
moire rosette, 240
moire sensitivity multiplication, 235
in white light speckle photography, 432
see also speckle photography
spatial filtering, 221
application to moire, 241–65
examples, 222
inverse transform, 221
moire fringe patterns, 234
Subject index

spatial filtering—continued
 optical system, 222
 superimposed gratings, 233
 see also pinhole spatial filter; speckle photography
 speckle correlation interferometry, see
 speckle interferometry
 speckle effect, 395–6
 speckle fields, combinations, see laser speckle
 speckle interferometry
 basic concepts, 441
 creating fringes, 451
 double exposure fringes, 451
 error analysis, 449
 error in displacement measurement, 449
 fringe–displacement relation, 444, 447
 fringe visibility, 451
 and geometric moire, 441
 in-plane displacement, 446
 optical arrangements, 445–8
 optical Fourier processing, 452
 out-of-plane displacement, 444
 phase relationship, 444, 447
 real-time fringes, 451
 recording specklegram, 450
 reference beam, 442
 sensitivity vector, 446
 specklegram as filter mask, 443
 time-average fringes, 451
 see also electronic speckle pattern interferometry; laser speckle; phase shifting interferometry
 speckle photography
 basic idea, 409–12
 calibration procedures, 425
 calibrator, 425–6
 characteristics, 411
 diffraction pattern, 415–19
 dual-aperture technique, 429–31
 Fourier transform, 417, 419–23
 fringe-irradiance distribution, 418
 fringe sensitivity vector, 425
 history, 410
 inverse transform, 423
 limitations, 426–9
 and moire gratings, 414, 429, 431
 pointwise displacement determination, 415–419
 relationship between speckle pairs and
 Fourier transform, 421
 sensitivity, 411
 single aperture method, 412
 single aperture setup, 413
 slotted apertures, 429, 431
 spatial filtering, 419–25
 spatial filtering, physical interpretation, 419–23
 terminology, 411
 two-beam interference in, 429
 whole field displacement fringes, see
 spatial filtering
 Young's fringe–displacement relation, 418
 Young's fringes, 412, 416
 see also laser speckle; speckle interferometry; white light speckle photography
 speckle size, 397–9
 strain–optic coefficient, 66
 stress–optic coefficient, 65, 87, 107
 stress separation
 Dirichlet problem, 125
 finite difference Laplacian, 126
 Laplace equation, 124
 numerical iteration, 125
 oblique incidence, 131
 sample solution by iteration, 127
 series solution, 128
 shear difference, 134
 thickness change method, 129
 see also analogs
 stress trajectories, 90
 three-dimensional moire, see moire with optical processing
 three-dimensional photoelasticity
 approaches, 143
 tuned apertures, see slotted apertures
 TV holography, see electronic speckle pattern interferometry
 two-beam interference, see holography;
 interference, speckle photography
 video holography, see electronic speckle pattern interferometry
 viscoelastic response, 105
 creep compliance, 105
 extension modulus, 105
 optical creep compliance, 107
 wave equation, 17, 18
 wavefronts, 29
 wavelength, 18
Subject index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>wavelength units, 19</td>
<td>19</td>
</tr>
<tr>
<td>wave number, 19</td>
<td></td>
</tr>
<tr>
<td>wave propagation in birefringent materials, 60</td>
<td></td>
</tr>
<tr>
<td>white light speckle photography, 431–7</td>
<td></td>
</tr>
<tr>
<td>applications, 433</td>
<td></td>
</tr>
<tr>
<td>atmospheric turbidity effects, 437</td>
<td></td>
</tr>
<tr>
<td>creation of speckle, 432</td>
<td></td>
</tr>
<tr>
<td>fringe formation theory, 433</td>
<td>433</td>
</tr>
<tr>
<td>glacier-flow measurement, 433–7</td>
<td></td>
</tr>
<tr>
<td>Young's fringes in, 435</td>
<td>435</td>
</tr>
<tr>
<td>Young's fringes, 43</td>
<td>43</td>
</tr>
<tr>
<td>interpretation, 45</td>
<td>45</td>
</tr>
<tr>
<td>see also speckle photography, white light speckle photography</td>
<td></td>
</tr>
</tbody>
</table>

© Cambridge University Press

www.cambridge.org