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CHAPTER ONE 

Introduction 

UNCERTAINTY IN THE ENGINEERING CONTEXT 

1.1 Uncertainty 

The engineering function is to design, produce, test, and service structures, de­
vices, materials, and processes that meet a market need, reliably and at a competi­
tive cost. Much of the work involved with that function deals with mathematical 
models of the engineer's designs and the physical phenomena encountered by 
them. These models efficiently aid the engineer in the design of his artifacts and 
in the prediction of their behavior. 

Consider, for example, the mathematical model for the deflection of the unsup­
ported end of a beam whose other end is rigidly fixed (such a beam is called a 
"cantilever"). For a beam of length L and cross-sectional moment of inertia I, 
the deflection 0 of the free end is 

WL 3 
0=--

3 E I ' 

where W is a point load on the free end of the beam and E is a material property 
called the modulus of elasticity. One design problem is to choose the shape 
and dimensions of the beam cross section so that the deflection is limited to a 
specified value 0. 

To use these models, the engineer requires information on the constants, para­
meters, and functional variables that enter the model. The seasoned engineer 
will be aware of the uncertainties that often come with these values. He will 
therefore know that his designs and predictions will also be associated with 
uncertainties. 

In the above example, the engineer will need to know the magnitude of the 
load W. Suppose that his design is to support an overhead conveyor track for 
transporting manufactured parts to an assembly operation. He will notice that W 
varies from instant to instant. He therefore needs to choose a design value Wo so 
that his design meets the specified deflection limit 0. Similarly, he may realize 
that the £-value varies among material test specimens. He therefore needs to 
choose a design value Eo so that his design is likely to perform adequately. 
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INTRODUCTION 

How an engineer deals with the uncertainties he faces depends on their rela­
tive magnitudes and their likely consequences. If he expects that only small 
variations of a parameter may occur around a large central value, or if the 
effect of the expected variation on the performance of the device is small, he 
may ignore the uncertainty altogether and assume a suitable constant value. If, 
however, the expected variation is large, or its effect may produce a failure with 
serious consequences, then the uncertainty is significant, and he must deal with 
it explicitly. 

Continuing with the preceding example, the engineer may realize that the E­
value for his material is I ikely to depart from its average value by no more than 
a few percent. He may therefore declare it to be constant for his purposes and 
work with its average value or, to be conservative, some low percentile value. 
However, because the loads Wthat are likely to occur may vary across an order 
of magnitude for different parts carried to assembly, he needs to be careful about 
his choice of design load W0 . 

How the engineer accommodates significant uncertainty in his calculations 
depends on the situation. He may simply take the most detrimental value that he 
considers possible and multiply it by a "safety factor" to arrive at a deterministic 
design value. The result is typically a costly overdesign. Furthermore, it is not 
possible to assess the risk of failure for such a design when the extreme cannot 
be accurately predicted. 

In the above example, it may be perfectly acceptable to take the weight of the 
heaviest part to be transported by the conveyer track and multiply it by the 
factor of, say, two to obtain the design load W0 . The increased cost for a few 
such cantilevers is unlikely to be significant. However, if the design is to be 
mass produced, the increased cost will be significant, so that an arbitrary safety 
factor may not be acceptable. Similarly, if the maximum load W for a range 
of design applications cannot be predicted, and only sample values of possible 
loads are available, the likelihood of adequate performance of the design cannot 
be assessed under this deterministic approach. 

The modern climate of competitiveness demands the efficient use of materi­
als, as well as more reliable designs. The former requirement pushes the design 
closer to the possibility of failure, whereas the latter demand obviously pushes 
in the opposite direction. To deal with this dilemma in a professional manner, 
the engineer must treat the significant uncertainties of his information base. The 
rational approach to dealing with such uncertainties is to construct a mathe­
matical model that describes the uncertainty aspect of engineering information, 
similar to representing a physical phenomenon. The measure of this uncertainty 
aspect of engineering quantities is probability. This text deals specifically with 
some useful ways to model the uncertainty and variation associated with the 
quantitative information encountered in a wide variety of engineering contexts. 
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UNCERTAINTY IN THE ENGINEERING CONTEXT 

1.2 Sources of Uncertainty 

The question might be asked at this point: "If engineering information is often 
uncertain, where does that uncertainty come from?" The sources of uncertainty 
can be broadly classified as follows. 

1. data uncertainty, 
2. statistical uncertainty, 
3. event uncertainty, and 
4. model uncertainty. 

Data Uncertainty 

The majority of the quantities the engineer measures or observes feature inherent 
variability. That is, the measured value is caused, or influenced, by many chance 
factors whose effects aggregate to produce a measured value. No matter how 
carefully one measures such a quantity, variability among measured values is an 
inherent reality, so that the actual value of a future measurement is uncertain. 

Examples of inherently variable quantities are: the yield of a chemical batch 
process, the specific strength of an engineering material, the gust load on an 
aircraft wing, the time-to-failure of equipment, the cost of an engineering project, 
the duration of an assembly task, the throughput time of a production order, the 
propagation rate of a combustion flame front, and the number of stress reversals 
to the fatigue failure of a metal specimen. 

Inherent variability is a source of uncertainty the engineer encounters com­
monly. However, even when the engineer measures a quantity that is inherently 
constant, such as the distance between two survey stations, he will find that his 
observations vary at the limit of precision of his measuring instruments. That 
is, the process of measurement itself often introduces uncertainty, regardless of 
whether the measured quantity is inherently constant or variable. This measure­
ment uncertainty may show up as instrument bias where the true value differs 
from its measured value by some consistent amount. Calibration of the instru­
ment by a standard of sufficient accuracy reduces this uncertainty. Measurement 
uncertainty also appears in the form of random differences between true and 
measured values, in much the same way that inherent variability occurs. Using 
instruments of sufficient precision and carefully designing the instrumentation 
system render this uncertainty insignificant compared to the precision required 
in the measurement. 

Statistical Uncertainty 

An important source of uncertainty is the limited amount of information that is 
typically available on a measurable quantity. That is, the quantity of interest may 
be measurable an unrestricted number of times, but time and budget constraints 
permit only few observations. Clearly, the more observations are on hand, the 
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INTRODUCTION 

more information on that quantity is available. Thus, limited information im­
plies uncertainty about the true nature of the quantity. 

For example, if only five prototypes of a newly developed device are available for 
performance testing, the project engineer could only form a rather approximate 
impression of the design's performance. A characteristic such as average perfor­
mance would then be highly uncertain. Other important characteristics, such as 
5-percentile performance, could not even be expressed sensibly. If, however, one 
had fifty prototypes to test, one could draw conclusions on design performance 
with more assurance that they are close to true values. 

An assessment of statistical uncertainty is made in the form of standard errors, 
or related measures, attached to the predictions of the quantity in question. Error 
statements, and the like, are important means of communicating the presence 
and magnitude of uncertainty to the decision maker who can then evaluate the 
risk associated with his decision. In this text the methods for constructing these 
uncertainty measures are presented and illustrated. 

Event Uncertainty 

In specifying his design, the engineer will have to guard against the effects of 
unfavorable events that may occur during the design's mission. That is, he is 
concerned with the occurrence of events. The events of design significance are 
usually of the kind that happen only rarely, so that typically there is little in­
formation available on their likely occurrence. The resulting design decision is 
often highly uncertain. 

For example, the engineer would consider the possibility of a major meteorite 
impact in the design of a spacecraft structure. He would consider the chance of a 
high wind load occurring during the construction phase of a suspension bridge. 
In the design of a communications tower he would consider the possibility of a 
high load induced by a major earthquake. 

Model Uncertainty 

The mathematical models the engineer uses in his work typically represent only 
one, or a few, of the important features of the physical phenomenon in ques­
tion. That is, a model represents a restricted version of reality. Furthermore, the 
model's description of a real problem is often an idealization. The model there­
fore deviates from reality. When the model's "lack of fit" to reality significantly 
affects the conclusions drawn from it, these conclusions are in error. To reduce 
this type of uncertainty, one needs to construct more realistic models. 
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For example, material failure mechanisms involve complex interactions of many 
contributing causes. Mathematical models of failure only consider one or two 
of the important factors and relate these to failure events by simple algebraic 
relations. Predictions of material behavior based on these models often differ 
widely from what is observed. In contrast, although many strain models are 
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UNCERTAINTY IN THE ENGINEERING CONTEXT 

frequency 

maximum load 

Figure 1.1. Two uncertainty models of a load variable. 

linear idealizations of nonlinear reality, their predictions are quite accurate, at 
least for small strains. 

The problem of model-fit, when describing physical phenomena, also appears 
when a probability model is chosen to describe the uncertainty aspect of engi­
neering information. Again, when the model does not accord with reality, the 
conclusions from the model are in error. 

For example, suppose that an engineer has on hand a good set of observations 
on the maximum of a load to which his equipment design will be exposed during 
its mission. Suppose further that he needs to know the 99-percentile maximum 
load as an input to his design process. Figure 1.1 shows two probability models 
representing the maximum load variable. The two models have about the same 
average and spread, in line with the data, and both are acceptable as fair repre­
sentations of the bulk of the data. However, the estimate x of the 99-percentile 
load differs by a factor of about two between the models. Thus, the question 
of which model provides a better description of this load phenomenon clearly 
needs further and careful attention. 

This text alerts the practicing engineer to a variety of useful models available to 
him, and it describes the practical situations in which each model is appropriate. 

1.3 Population versus Sample 

It is useful to explore the notion of statistical uncertainty further to make the im­
portant distinction between a population of individuals and a sample of individ­
uals from that population. When all individuals of a population are known (i.e., 
when all possible measurements on a variable are on hand), one has complete in­
formation on that population (i.e., the true nature of the measured phenomenon 
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INTRODUCTION 

is known). In practice, one cannot usually know all individuals in a population. 
Instead, only a small selection of individuals (a sample) is known. The sample 
thus represents incomplete information on the population: It is all the quanti­
tative information one has. However, one naturally wishes to form conclusions 
about the population, given the incomplete information of the sample. Conclu­
sions, then, pertain to populations (i.e., a measurement phenomenon in general), 
whereas the available information base only comprises the knowledge residing 
in the sample (i.e., the limited set of actual observations on hand). Thus, sample 
information is fully known, but conclusions about the population are necessarily 
shrouded in uncertainty. 

For example, the engineer may have a sample of twenty-five material test speci­
mens, loaded to failure. There is nothing uncertain aboutthe sample itself, barring 
experimental error. However, with respect to the strength property of this type 
of material, the sample information is incomplete. Nevertheless, given this in­
complete information, the engineer wishes to draw conclusions on the strength 
of this material in general. 

1.4 Statistics versus Probability 

The specific measurements in a sample are the data that comprise the engineer's 
quantitative information base. Given that information, he needs to construct a 
probability model that describes the variability of the population as accurately as 
possible. The process of constructing such a model on the basis of data is termed 
"statistical inference." The main inferential procedures are point estimation, 
confidence interval estimation, and hypothesis testing (see Chapter 3). These 
procedures are inductive, as they proceed from the specific (sample) to the general 
(model), and belong to the subject of statistics. They answer questions about the 
population. 

Continuing with the preceding example, the engineer may need to establish, 
on the basis of the twenty-five test results, whether this material is substantially 
stronger than a specified value. He would do this by means of a hypothesis test. 

Once a population model is inferred (or assumed), it forms the basis for answer­
ing questions about a sample. The procedures used are essentially the rules of 
probability. These rules are deductive as they proceed from model to experi­
mental data. 

In the above example, suppose the engineer has inferred a probability model of 
material strength from the data. Given that model, he could deduce the proba­
bility that a further test specimen breaks below a specified strength value. 

Figure 1.2 shows the distinctions involved. This text focuses on the statistics of 
inferring, from measurement data, the specifics of a distribution, chosen from a 
number of models that are prominent in engineering and the sciences. 
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DATA 

Statistics 
inductive reasoning 

Sample Population 
data model 

Probability 
deducl1ve reasonmg 

Figure 1.2. The relation between sample and population. 

DATA 

1.5 Sample Measures 

An experiment in which a variable of interest X is measured or observed n times 
produces the data x; that the engineer works with. Such an experiment may be 
set up in a laboratory specifically to produce the required data, or it may take 
place in the field and consist of gathering data as they happen. 

For example, a fatigue experiment in a materials testing lab measures the number 
of stress reversals to failure for several specimens. These measured stress reversals 
are the data. Keeping records of operating times between failures of transmissions 
for a fleet of trucks produces information on the life of these transmissions. These 
times-to-failure are the data. 

The collection of raw data in a sample, 1 denoted by {xdn, is by itself not 
particularly informative. To bring out salient features of the sample, the data 
are processed to generate descriptive statistics, usually in the following sequence: 

1. The data are ordered according to increasing magnitude, resulting in a 
rearranged set {xuJ}n. Thus, X(lJ is the smallest observation in the sample, 
X(2J is the next-larger observation, and so on. These rearranged values are 
called "order statistics." The range of the data, given by [ X(n) - X(l)], tells 
how widely dispersed the data are. 

2. Some useful sample measures are calculated, such as the 

I - 1 '\'n samp e mean: x = ;; L..,;=1 x;, 
sample mode: Xm = most frequent measurement, 

sample median: x = middle-most ordered measurement, 
I · 2 1 '\'n ( -)2 samp e vanance: s = n=T L..,i=1 x; - x , 

sample standard deviation: s = J sample variance, 

sample coefficient of variation: scv = s j x. 
These measures summarize the sample information by describing (a) where 
the bulk of the data are located on the measurement axis (i.e., x, Xm, x) and 
(b) how dispersed the sample is (i.e., s (in units of X); scv (dimensionless). 

1 The statistical procedures of this text assume that the sample is "random." This means that 
the data are drawn independently from a common population; see also Section 2.2. 
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INTRODUCTION 

3. If the sample size n is sufficiently large (at least 25), it is instructive to 
group the data into (usually equal) measurement intervals, so that a sample 
frequency distribution (called a histogram) can be displayed in a table or 
on a graph. That is, if the data range is split into k intervals b. xi, the 
frequencies 

qi =the number of observations x in b.xi 

can be obtained. The relative frequencies 

f - qj ,- n 

describe in some detail the variability among the data {xi ln· The cumulative 
relative frequencies 

j 

Fj = L (; 
i=l 

indicate the distribution of the likelihood of the values Xi over the data 
range. The graphical display of fi provides an informative picture of the 
variation among the data Xi. See Example 1.1 for a Math cad document 
where a sample of 29 measurements is processed as described above. 

1.6 Distribution Function 

When one cannot know in advance the values of repeated measurements on a 
quantity of interest, it is practical to describe that quantity as a random vari­
able, denoted by a capital letter such as X. This random variable refers to the 
population. The collection of all possible values in the population is called the 
sample spaceS. The realizations of X, that is, measurements on X, are denoted 
by lowercase letters such as x. A set of these realizations is the sample. Thus, a 
sample is a subset of values in the larger sample space S. 

The uncertainty aspect of the random variable X is modeled by a statistical 
distribution F (x; 8). Here F is a mathematical function of the values x that the 
variable X can take in its sample space S. The model F is indexed by parameters 
8. Thus, F (x; 8) comprises a family of distributions, indexed by the values 8 can 
take in its parameter space Q. See Chapters 4 and 9 for a little more detail on 
the nature of the distribution function F. 
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For example, suppose an engineer is interested in a random variable X that repre­
sents the yield of a chemical process under specified process conditions. Obser­
vations x on process yield are realizations, and a set of these constitutes a sample. 

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-63232-4 - Statistical Distributions in Engineering
Karl Bury
Excerpt
More information

http://www.cambridge.org/9780521632324
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521632324: 


