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1

Kinematics

THIS ENTIRE CHAPTER IS INTRODUCTORYin much the same way as Ap-
pendix A is. In Appendix A, I introduce the mathematical language that I shall be using

in describing physical problems. In this chapter, I indicate some of the details involved in rep-
resenting from the continuum point of view the motions and deformations of real materials.
This chapter is important not only for the definitions introduced, but also for the viewpoint
taken in some of the developments. For example, the various forms of the transport theorem
will be used repeatedly throughout the text in developing differential equations and integral
balances from our basic postulates.

Perhaps the most difficult point for a beginner is to properly distinguish between the
continuum model for real materials and the particulate or molecular model. We can all agree
that the most factually detailed picture of real materials requires that they be represented in
terms of atoms and molecules. In this picture, mass is distributed discontinuously throughout
space; mass is associated with the protons, neutrons, electrons,. . . , which are separated by
relatively large voids. In the continuum model for materials, mass is distributed continu-
ously through space, with the exception of surfaces of discontinuity, which represent phase
interfaces or shock waves.

The continuum model is less realistic than the particulate model but far simpler. For many
purposes, the detailed accuracy of the particulate model is unnecessary. To our sight and
touch, mass appears to be continuously distributed throughout the water that we drink and the
air that we breathe. The problem is analogous to a study of traffic patterns on an expressway.
The speed and spacings of the automobiles are important, but we probably should not worry
about whether the automobiles have four, six, or eight cylinders.

This is not to say that the particulate theories are of no importance. Information is lost
in a continuum picture. It is only through the use of statistical mechanics that a complete a
priori prediction about the behavior of the material can be made. I will say more about this
in the next chapter.

1.1 Motion

My goal in this book is to lay the foundation for understanding a wide variety of operations
employed in the chemical and petroleum industries. To be specific, consider the extrusion of
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Figure 1.1.0-1. A rubber ball in three
configurations as it strikes a wall and re-
bounds. The particle that was in the po-
sition zκ in the reference configuration
is in the positionz at timet .

a molten polymer to produce a fiber, catalytic cracking in a fluidized reaction, the production
of oil and gas from a sandstone reservoir, or the flow of a coal slurry through a pipeline. One
important feature that these operations have in common is that at least some of the materials
concerned are undergoing deformation and flow.

How might we describe a body of material as it deforms? Figure 1.1.0-1 shows a rubber
ball in three configurations as it strikes a wall and rebounds. How should we describe the
deformation of this rubber body from its original configuration as a sphere? How should
velocity be defined in order to take into account that it must surely vary as a function of
position within the ball as well as time as the ball reaches the wall and begins to deform?
We need a mathematical description for a body that allows us to describe where its various
components go as functions of time.

Let’s begin by rather formally defining a body to be set, any elementζ of which is called
a particle or amaterial particle. A material particle is aprimitive, in the sense that it is not
defined but its properties are described. I will give an experimentally oriented description
of a material particle a little later in this section. Meanwhile, be careful not to confuse a
material particle with a molecule. Molecules play no role in continuum mechanics; they are
introduced in the context of the other model for real materials – statistical mechanics.

A one-to-one continuous mapping of this set of material particles onto a region of the
spaceE studied in elementary geometry exists and is called aconfigurationof the body:

z= X(ζ ) (1.1.0-1)

ζ = X−1(z) (1.1.0-2)

The pointz= X(ζ ) of E is called the place occupied by the particleζ , andζ = X−1(z), the
particle whose place inE is z.

It is completely equivalent to describe the configuration of a body in terms of the position
vectorz of the pointz with respect to the originO (Section A.1.2):

z= χ(ζ ) (1.1.0-3)

ζ = χ−1(z) (1.1.0-4)
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Hereχ−1 indicates the inverse mapping ofχ. With an originO having been defined, it is
unambiguous to refer toz = χ(ζ ) as the place occupied by the particleζ andζ = χ−1(z)
as the particle whose place isz.

In what follows, I choose to refer to points inE by their position vectors relative to a
previously defined originO.

A motionof a body is a one-parameter family of configurations; the real parametert is
time. We write

z= χ(ζ, t) (1.1.0-5)

and

ζ = χ−1(z, t) (1.1.0-6)

I have introduced the material particle as a primitive concept, without definition but with
a description of its attributes. A set of material particles is defined to be a body; there is a
one-to-one continuous mapping of these particles onto a region of the spaceE in which we
visualize the world about us. But clearly we need a link with what we can directly observe.

Whereas the bodyB should not be confused with any of its spatial configurations, it is
available to us for observation and study only in these configurations. We will describe a
material particle by its position in areference configurationκ of the body. This reference
configuration may be, but need not be, one actually occupied by the body in the course of
its motion. The place of a particle inκ will be denoted by

zκ = κ(ζ ) (1.1.0-7)

The particle at the placezκ in the configurationκ may be expressed as

ζ = κ−1(zκ ) (1.1.0-8)

The motion of a body is described by

z = χ(ζ, t)

= χκ (zκ , t)
≡ χ(κ−1(zκ ), t) (1.1.0-9)

Referring to Figure 1.1.0-1, we find that the particle that was in the positionzκ in the reference
configuration is at timet in the positionz. This expression defines a family ofdeformations
from the reference configuration. The subscript. . .κ is to remind you that the form ofχκ
depends upon the choice of reference configurationκ.

The position vectorzκ with respect to the originO may be written in terms of its rectan-
gular Cartesian coordinates:

zκ = zκ i ei (1.1.0-10)

The zκ i (i = 1, 2, 3) are referred to as thematerial coordinatesof the material particleζ .
They locate the position ofζ relative to the originO, when the body is in the reference
configurationκ. In terms of these material coordinates, we may express (1.1.0-9) as

z = χκ (zκ , t)

= χ̂κ (zκ1, zκ2, zκ3, t) (1.1.0-11)
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Let A be any quantity: scalar, vector, or tensor. We shall have occasion to talk about the
time derivative ofA following the motion of a particle. We define

d(m) A

dt
≡
(
∂A

∂t

)
ζ

≡
(
∂A

∂t

)
zκ

≡
(
∂A

∂t

)
zκ1,zκ2,zκ3

(1.1.0-12)

We refer to the operationd(m)/dt as thematerial derivative[or substantial derivative (Bird
et al. 1960, p. 73)]. For example, thevelocity vectorv represents the time rate of change of
position of a material particle:

v ≡ d(m)z
dt

≡
[
∂χ (ζ, t)

∂t

]
ζ

≡
[
∂χκ (zκ , t)

∂t

]
zκ

≡
[
∂χ̂κ (zκ1, zκ2, zκ3, t)

∂t

]
zκ1,zκ2,zκ3

(1.1.0-13)

We are involved with several derivative operations in the chapters that follow. Bird et al.
(1960, p. 73) have suggested some examples that serve to illustrate the differences.

The partial time derivative ∂c/∂t Suppose we are in a boat that is anchored securely in a river,
some distance from the shore. If we look over the side of our boat and note the concentration
of fish as a function of time, we observe how the fish concentration changes with time at a
fixed position in space:

∂c

∂t
≡
(
∂c

∂t

)
z

≡
(
∂c

∂t

)
z1,z2,z3

The material derivative d(m)c/dt Suppose we pull up our anchor and let our boat drift along with
the river current. As we look over the side of our boat, we report how the concentration of
fish changes as a function of time while following the water (the material):

d(m)c

dt
= ∂c

∂t
+∇c · v (1.1.0-14)

The total derivative dc/dt We now switch on our outboard motor and race about the river,
sometimes upstream, sometimes downstream, or across the current. As we peer over the
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side of our boat, we measure fish concentration as a function of time while following an
arbitrary path across the water:

dc

dt
= ∂c

∂t
+∇c · v(b) (1.1.0-15)

Herev(b) denotes the velocity of the boat.

Exercise 1.1.0-1 Let A be any real scalar field, spatial vector field, or second-order tensor field.
Show that1

d(m) A

dt
= ∂A

∂t
+∇A · v

Exercise 1.1.0-2 Let a= a(z, t) be some vector field that is a function of position and time.

i) Show that

d(m)a
dt
=
(
∂an

∂t
+ an,i v

i

)
gn

ii) Show that

d(m)a
dt
=
(
∂an

∂t
+ an,i v

i

)
gn

Exercise 1.1.0-3 Consider the second-order tensor fieldT = T(z, t).

i) Show that

d(m)T
dt
=
(
∂Ti j

∂t
+ Ti j ,k v

k

)
gi g j

ii) Show that

d(m)T
dt
=
(
∂Ti

j

∂t
+ Ti

j ,k v
k

)
gi g j

Exercise 1.1.0-4 Show that

d(m)(a · b)

dt
= d(m)

dt
(ai bi )

= d(m)ai

dt
bi + ai d(m)bi

dt

1 Where I write (∇A) · v, some authors say insteadv · (∇A). WhenA is a scalar, there is no difference.
When A is either a vector or second-order tensor, the change in notation is the result of a different
definition for the gradient operation. See Sections A.6.1 and A.8.1.
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Exercise 1.1.0-5

i) Starting with the definition for the velocity vector, prove that

v = d(m)xi

dt
gi

ii) Determine that, with respect to the cylindrical coordinate system defined in Exercise
A.4.1-4,

v = d(m)r

dt
gr + r

d(m)θ

dt
gθ + d(m)z

dt
gz

iii) Determine that, with respect to the spherical coordinate system defined in Exercise
A.4.1-5,

v = d(m)r

dt
gr + r

d(m)θ

dt
gθ + r sinθ

d(m)ϕ

dt
gϕ

Exercise 1.1.0-6 Path lines The curve in space along which the material particleζ travels is referred
to as thepath line for the material particleζ . The path line may be determined from the
motion of the material as described in Section 1.1:

z= χ(zκ , t)

Herezκ represents the position of the material particleζ in the reference configurationκ;
time t is a parameter along the path line that corresponds to any given positionzκ .

The path lines may be determined conveniently from the velocity distribution, since
velocity is the derivative of position with respect to time following a material particle. The
parametric equations of a particle path are the solutions of the differential system

dz
dt
= v

or

dzi

dt
= vi for i = 1, 2, 3

The required boundary conditions may be obtained by choosing the reference configuration
to be a configuration that the material assumed at some timet0.

As an example, let the rectangular Cartesian components ofv be

v1 = z1

1+ t
, v2 = z2

1+ 2t
, v3 = 0

and let the reference configuration be that which the material assumed at timet = 0. Prove
that, in the planez3 = zκ3, the particle paths or the path lines have the form

z2

zκ2
=
(

2
z1

zκ1
− 1

)1/2
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Exercise 1.1.0-7 Streamlines The streamlines for timet form that family of curves to which the
velocity field is everywhere tangent at a fixed timet . The parametric equations for the
streamlines are solutions of the differential equations

dzi

dα
= vi for i = 1, 2, 3

Hereα is a parameter with the units of time, anddz/dα is tangent to the streamline [see
(A.4.1-1)]. Alternatively, we may think of the streamlines as solutions of the differential
system

dz
dα
∧ v = 0

or

ei jk
dzj

dα
vk = 0 for i = 1, 2, 3

As an example, show that, for the velocity distribution introduced in Exercise 1.1.0-6, the
streamlines take the form

z2 = z2(0)

(
z1

z1(0)

)(1+t)/(1+2t)

for different reference points (z1(0), z2(0)).
Experimentalists sometimes sprinkle particles over a gas–liquid phase interface and take

a photograph in which the motion of the particles is not quite stopped (see Figures 3.5.1-1
and 3.5.1-3). The traces left by the particles are proportional to the velocity of the fluid
at the surface (so long as we assume that very small particles move with the fluid). For a
steady-state flow, such a photograph may be used to construct the particle paths. For an
unsteady-state flow, it depicts the streamlines, the family of curves to which the velocity
vector field is everywhere tangent.

In two-dimensional flows, the streamlines have a special significance. They are curves
along which the stream function (Sections 1.3.7) is a constant. See Exercise 1.3.7-2.

Exercise 1.1.0-8 For the limiting case of steady-state, plane potential flow past a stationary cylinder
of radiusa with no circulation, the physical components of velocity in cylindrical coordinates
are (see Exercise 3.4.2-2)

vr = V

(
1− a2

r 2

)
cosθ

vθ = −V

(
1+ a2

r 2

)
sinθ

and

vz = 0

Show that the family of streamlines is described by(
1− a2

r 2

)
r sinθ = C

Plot representative members of this family as in Figure 1.1.0-2.
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-3 -2 -1 1 2 3

-1.5

-1

-0.5

0.5

1

1.5

z2

z1

Figure 1.1.0-2. Streamlines for the limiting case of steady-
state, plane potential flow past a stationary cylinder with no
circulation corresponding toC = 0.2, 0.4, 0.6, 0.8, 1.

Exercise 1.1.0-9 Streak lines The streak line through the pointz(0) at timet represents the positions
at timet of the material particles that at any timeτ ≤ t have occupied the placez(0).

Experimentally we might visualize that smoke, dust, or dye are continuously injected into
a fluid at a positionz(0) and that the resulting trails are photographed as functions of time.
Each photograph shows a streak line corresponding to the positionz(0) and the time at which
the photograph was taken.

We saw in Section 1.1 that the motionχ describes the positionz at timet of the material
particle that occupied the positionzκ in the reference configuration:

z= χ(zκ , t)

In constructing a streak line, we focus our attention on those material particles that were in
the placez(0) at any timeτ ≤ t :

zκ = χ−1
(
z(0), τ

)
The parametric equations of the streak line through the pointz(0) at timet are obtained by
eliminatingzκ between these equations:

z= χ (χ−1
(
z(0), τ

)
, t
)

Time τ ≤ t is the parameter along the streak line.
As an example, show that, for the velocity distribution of Exercise 1.1.0-6, the streak line

throughz(0) at timet is specified by

z1 = z1(0)

(
1+ t

1+ τ
)

z2 = z2(0)

(
1+ 2t

1+ 2τ

)1/2

z3 = z3(0)

A streak line corresponding tot = 4 is shown in Figure 1.1.0-3. This figure also presents
two of the path lines from Exercise 1.1.0-6 corresponding toτ = 0 and 0.5 that contribute
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2 3 4 5

1.5

2

2.5

3

0.25
= 0

t = 4

z1

z2

τ

Figure 1.1.0-3. Starting from the top, we see two path lines
from Exercise 1.1.0-6) corresponding toτ = 0 and 0.25. The
bottom curve is the streak line corresponding tot = 4.

to this streak line. The path line corresponding toτ = 0 extends to the right tip of the streak
line. It represents the first particle contributing to the streak line. A path line corresponding
to τ = 4 would merely be a point at the left tip of the streak line, the origin of the streak
line (0, 0). It would represent the particle currently leaving the origin.

Exercise 1.1.0-10 Show that, for a velocity distribution that is independent of time, the path lines,
streamlines, and streak lines coincide.

Hint: In considering the path line, take as the boundary condition

at t = τ : z= z(0)

This suggests the introduction of a new variableα ≡ t − τ , which denotes time measured
since the particle passed through the positionz(0).

1.2 Frame

1.2.1 Changes of Frame

The Chief of the United States Weather Bureau in Milwaukee announces that a tornado was
sighted in Chicago at 3P.M. (Central Standard Time). In Chicago, Harry reports that he saw
a black funnel cloud about two hours ago at approximately 800 North and 2400 West. Both
men described the same event with respect to their own particular frame of reference.

The time of some occurrence may be specified only with respect to the time of some
other event, theframe of reference for time. This might be the time at which a stopwatch was
started or an electric circuit was closed. The Chief reported the time at which the tornado
was sighted relative to the mean time at which the sun appeared overhead on the Greenwich
meridian. Harry gave the time relative to his conversation.
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b(1)

b(2)

Figure 1.2.1-1. Pencil points away from the di-
rection ofb(1) and toward the direction ofb(2).

A frame of reference for positionmight be the walls of a laboratory, the fixed stars, or the
shell of a space capsule that is following an arbitrary trajectory. When the Chief specified
Chicago, he meant the city at 41◦ north and 87◦ west measured relative to the equator and
the Greenwich meridian. Harry thought in terms of eight blocks north of Madison Avenue
and 24 blocks west of State Street. More generally, a frame of reference for position is a set
of objects whose mutual distances remain unchanged during the period of observation and
which do not all lie in the same plane.

To help you get a better physical feel for these ideas, let us consider two more examples.
Extend your right arm and take as your frame of reference for position the direction of

your right arm, the direction of your eyes, and the direction of your spine. Stand out at the
street with your eyes fixed straight ahead. A car passes in the direction of your right arm.
If you were standing facing the street on the opposite side, the automobile would appear to
pass in the opposite direction from your right arm.

Lay a pencil on your desk as shown in Figure 1.2.1-1 and take the edges of the desk that
meet in the left-hand front corner as your frame of reference for position. The pencil points
away fromb(1) and towardb(2). Without moving the pencil, walk around to the left-hand
side and take as your new frame of reference for position the edges of the desk that meet at
the left-hand rear corner. The pencil now appears to point toward the intersection ofb∗(1) and
b∗(2) in Figure 1.2.1-2.

Since all of the objects defining a frame of reference do not lie in the same plane, we may
visualize replacing them by three mutually orthogonal unit vectors. Let us view a typical
point z in this space with respect to two such frames of reference: theb(i ) (i = 1, 2, 3) in
Figure 1.2.1-3 and theb∗( j ) ( j = 1, 2, 3) in Figure 1.2.1-4.

An orthogonal transformation preserves both lengths and angles (Section A.5.2). LetQ
be the orthogonal transformation that describes the rotation and (possibly) reflection that
takes theb(i ) in Figure 1.2.1-3 into the vectorsQ · b(i ), which are seen in Figure 1.2.1-4 with
respect to the starred frame of reference for position. A reflection allows for the possibility
that an observer in the new frame looks at the old frame through a mirror. Alternatively,
a reflection allows for the possibility that two observers orient themselves oppositely, one
choosing to work in terms of a right-handed frame of reference for position and the other in
terms of a left-handed one. [For more on this point, I suggest that you read Truesdell (1966a,
p. 22) as well as Truesdell and Noll (1965, pp. 24 and 47).]

The vector
(
z− z(0)

)
in Figure 1.2.1-3 becomesQ ·

(
z− z(0)

)
when viewed in the starred

frame shown in Figure 1.2.1-4. From Figure 1.2.1-4, it follows as well that

z∗ − z∗(0) = Q ·
(
z− z(0)

)
(1.2.1-1)
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b(1)

b(2)
*

*

Figure 1.2.1-2. Pencil points
toward the direction ofb∗(1)
andb∗(2).

b(1)

b(2)

b(3)

z

z(0)

z(0)

z

z-z(0)

Figure 1.2.1-3. The pointsz and z(0) are located
by the position vectorsz andz(0) with respect to the
frame of reference for position

(
b(1), b(2), b(3)

)
.

Similarly,
(
z∗ − z∗(0)

)
in Figure 1.2.1-4 is seen asQT ·

(
z∗ − z∗(0)

)
when observed with

respect to the unstarred frame in Figure 1.2.1-5. Figure 1.2.1-5 also makes it clear that

z− z(0) = QT ·
(
z∗ − z∗(0)

)
(1.2.1-2)

Let z andt denote a position and time in the old frame;z∗ andt∗ are the corresponding
position and time in the new frame. We can extend the discussion above to conclude that the
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b(1)
b(2)

b(3)

z(0)

z(0)

z
Q z-z(0)

z

Q z

Q z(0)

Q b(1)

Q b(2)

Q b(3)

* *

*

*

*

. ( )
.

.

.
.

.

Figure 1.2.1-4. The pointsz and z(0) are located by the
position vectorsz∗ andz∗(0) with respect to the starred frame

of reference for position
(
b∗(1), b∗(2), b∗(3)

)
. With respect to

the starred frame of reference, the unstarred frame is seen as(
Q · b(1), Q · b(2), Q · b(3)

)
.

QT b(1)

QT b(2)

QT b(3)

QT z

QT z(0) QT z -z(0)

z(0)

z

z

z(0)

b(1)

b(2)

b(3)

.

*
* *

*

*

*

*

.

.

. . ( )

.

Figure 1.2.1-5. With respect to the unstarred frame
of reference, the starred frame is seen as(
QT · b∗(1), QT · b∗(2), QT · b∗(3)

)
.
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most general change of frame is of the form

z∗ = z∗(0)(t)+Q(t) ·
(
z− z(0)

)
(1.2.1-3)

t∗ = t − a (1.2.1-4)

where we allow the two frames discussed in Figures 1.2.1-3 and 1.2.1-4 to rotate and translate
with respect to one another as functions of time. The quantitya is a real number. Equivalently,
we could also write

z= z(0)(t)+QT ·
(
z∗ − z∗(0)

)
(1.2.1-5)

t = t∗ + a (1.2.1-6)

It is important to carefully distinguish between a frame of reference for position and a
coordinate system. Any coordinate system whatsoever can be used to locate points in space
with respect to three vectors defining a frame of reference for position and their intersection,
although I recommend that admissible coordinate systems be restricted to those whose axes
have a time-invariant orientation with respect to the frame. Let(z1, z2, z3) be a rectangular
Cartesian coordinate system associated with the frame of reference

(
b(1), b(2), b(3)

)
; simi-

larly, let
(
z∗1, z∗2, z∗3

)
be a rectangular Cartesian coordinate system associated with another

frame of reference
(
b∗(1), b∗(2), b∗(3)

)
. We will say that these two coordinate systems are the

sameif the orientation of the basis fieldsei with respect to the vectorsb( j ) is identical to the
orientation of the basis fieldse∗i with respect to the vectorsb∗( j ):

ei · b( j ) = e∗i · b∗( j ) for all i, j = 1, 2, 3 (1.2.1-7)

We will generally find it convenient to use the same coordinate system in discussing two
different frames of reference.

Let us use thesamerectangular Cartesian coordinate system to discuss the change of
frame illustrated in Figures 1.2.1-4 and 1.2.1-5. The orthogonal tensor

Q = Qi j e∗i ej (1.2.1-8)

describes the rotation (and possibly reflection) that transforms the basis vectorsej ( j =
1, 2, 3) into the vectors

Q · ej = Qi j e∗i (1.2.1-9)

which are vectors expressed in terms of the starred frame of reference for position. The
rectangular Cartesian components ofQ are defined by the angles between thee∗i and the
Q · ej :

Qi j = e∗i ·
(
Q · ej

)
(1.2.1-10)

The vector
(
z− z(0)

)
in Figure 1.2.1-3 becomes

Q ·
(
z− z(0)

) = Qi j

(
zj − z(0) j

)
e∗i (1.2.1-11)

when viewed in the starred frame shown in Figure 1.2.1-4. From Figure 1.2.1-4, it follows
as well that

z∗i e∗i = z∗(0)i e
∗
i + Qi j

(
zj − z(0) j

)
e∗i (1.2.1-12)
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We speak of a quantity as beingframe indifferentif it remains unchanged or invariant
under all changes of frame. Aframe-indifferent scalar bdoes not change its value:

b∗ = b (1.2.1-13)

A frame-indifferent spatial vectorremains the same directed line element under a change of
frame in the sense that if

u = z1− z2

then

u∗ = z∗1 − z∗2

From (1.2.1-3),

u∗ = Q · (z1− z2)

= Q · u (1.2.1-14)

A frame-indifferent second-order tensoris one that transforms frame-indifferent spatial
vectors into frame-indifferent spatial vectors. If

u = T · w (1.2.1-15)

the requirement thatT be a frame-indifferent second-order tensor is

u∗ = T∗ · w∗ (1.2.1-16)

where

u∗ = Q · u
(1.2.1-17)

w∗ = Q · w

This means that

Q · u = T∗ · Q · w
= Q · T · w (1.2.1-18)

which implies

T = QT · T∗ · Q (1.2.1-19)

or

T∗ = Q · T · QT (1.2.1-20)

The importance of changes of frame will become apparent in Section 2.3.1, where the
principle of frame indifference is introduced. This principle will be used repeatedly in
discussing representations for material behavior and in preparing empirical data correlations.

The material in this section is drawn from Truesdell and Toupin (1960, p. 437), Truesdell
and Noll (1965, p. 41), and Truesdell (1966a, p. 22).
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Exercise 1.2.1-1 Let T be a frame-indifferent scalar field. Starting with the definition of the
gradient of a scalar field in Section A.3.1, show that the gradient ofT is frame indifferent:

∇T∗ ≡ (∇T)∗ = Q · ∇T

Exercise 1.2.1-2 In order thatε (defined in Exercise A.7.2-11) be a frame-indifferent third-order
tensor field, prove that

ε∗ = (detQ)ei jk ei ej ek

1.2.2 Equivalent Motions

In Section 1.1, I described the motion of a material with respect to some frame of reference
by

z= χ(zκ , t) (1.2.2-1)

where we understand that the form of this relation depends upon the choice of reference
configurationκ. According to our discussion in Section 1.2.1, the same motion with respect
to some new frame of reference is represented by

z∗ = χ∗(z∗κ , t∗)
= z∗0(t)+Q(t) · [χ(zκ , t)− z0] (1.2.2-2)

We will say that any two motionsχ andχ∗ related by an equation of the form of (1.2.2-2)
areequivalent motions.

Let us write (1.2.2-2) in an abbreviated form:

z∗ = z∗0 +Q · (z− z0) (1.2.2-3)

The material derivative of this equation gives

v∗ = dz∗0
dt
+ dQ

dt
· (z− z0)+Q · v (1.2.2-4)

or

v∗ −Q · v = dz∗0
dt
+ dQ

dt
· (z− z0) (1.2.2-5)

In view of (1.2.2-3), we may write

z− z0 = QT · Q · (z− z0)

= QT ·
(
z∗ − z∗0

)
(1.2.2-6)

This allows us to express (1.2.2-5) as

v∗ −Q · v = dz∗0
dt
+
(

dQ
dt
· QT

)
·
(
z∗ − z∗0

)
= dz∗0

dt
+ A ·

(
z∗ − z∗0

)
(1.2.2-7)
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where

A ≡ dQ
dt
· QT (1.2.2-8)

We refer to the second-order tensorA as theangular velocity tensor of the starred frame
with respect to the unstarred frame(Truesdell 1966a, p. 24).

SinceQ is an orthogonal tensor,

Q · QT = I ∗ (1.2.2-9)

Taking the material derivative of this equation, we have

A = dQ
dt
· QT = −Q · dQT

dt

= −Q ·
(

dQ
dt

)T

= −AT
(1.2.2-10)

In this way we see that the angular velocity tensor is skew symmetric.
Theangular velocity vector of the unstarred frame with respect to the starred frameω is

defined as

ω ≡ 1

2
tr(ε∗ · A) (1.2.2-11)

The third-order tensorε is introduced in Exercises A.7.2-11 and A.7.2-12 (see also Exercise
1.2.1-2), where tr denotes the trace operation defined in Section A.7.3. Let us consider the
following spatial vector in rectangular Cartesian coordinates:

ω ∧
(
z∗ − z∗0

) = tr
(
ε∗ ·

[(
z∗ − z∗0

)
ω
])

= tr

(
ε∗ ·

{[
z∗ − z∗0

] [1

2
tr(ε∗ · A)

]})

= ei jk

(
z∗k − z∗0k

) (1

2
ejmnAnm

)
e∗i

= 1

2

(
z∗k − z∗0k

)
(Ai j − Aki )e∗i

= (z∗k − z∗0k

)
Aike∗i

= A ·
(
z∗ − z∗0

)
(1.2.2-12)

We may consequently write (1.2.2-7) in terms of the angular velocity of the unstarred frame
with respect to the starred frame (Truesdell and Toupin 1960, p. 437):

v∗ = dz∗0
dt
+ ω ∧ [Q · (z− z0)] +Q · v (1.2.2-13)
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The material in this section is drawn from Truesdell and Noll (1965, p. 42) and Truesdell
(1966a, p. 22).

Exercise 1.2.2-1

i) Show that velocity is not frame indifferent.
ii) Show that at any position in euclidean point space a difference in velocities with respect

to the same frame is frame indifferent.

Exercise 1.2.2-2 Acceleration

i) Determine that (Truesdell 1966a, p. 24)

d(m)v∗

dt
= d2z∗0

dt2
+ 2A ·

(
v∗ − dz∗0

dt

)
+
(

dA
dt
− A · A

)
·
(
z∗ − z∗0

)+Q · d(m)v
dt

ii) Prove that (Truesdell and Toupin 1960, p. 440)

d(m)v∗

dt
= d2z∗0

dt2
+
(

d(m)A
dt
+ A · A

)
· Q · (z− z0)

+ 2A · Q · v+Q · d(m)v
dt

iii) Prove that

ω ∧
[
ω ∧

(
z∗ − z∗0

)] = A · A ·
(
z∗ − z∗0

)
dω

dt
∧ ∧

(
z∗ − z∗0

) = dA
dt
·
(
z∗ − z∗0

)
and

ω ∧ (Q · v) = A · Q · v

iv) Conclude that (Truesdell and Toupin 1960, p. 438)

d(m)v∗

dt
= d2z∗0

dt2
+ dω

dt
∧ · [Q · (z− z0)]

+ ω∧ {ω ∧ [Q · (z− z0)]}

+ 2ω ∧ · (Q · v)+Q · d(m)v
dt

Exercise 1.2.2-3 Give an example of a scalar that is not frame indifferent.

Hint: What vector is not frame indifferent?
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Exercise 1.2.2-4 Motion of a rigid body Determine that the velocity distribution in a rigid body may
be expressed as

v∗ = dz∗0
dt
+ ω ∧ (

z∗ − z∗0
)

What is the relation of the unstarred frame to the body in this case?

1.3 Mass

1.3.1 Conservation of Mass

This discussion of mechanics is based upon several postulates. The first is

Conservation of mass The mass of a body is independent of time.

Physically, this means that, if we follow a portion of a material body through any number
of translations, rotations, and deformations, the mass associated with it will not vary as a
function of time. Ifρ is themass densityof the body, the mass may be represented as∫

R(m)

ρ dV

HeredV denotes that a volume integration is to be performed over the regionR(m) of space
occupied by the body in its current configuration; in generalR(m), or the limits on this
integration, is a function of time. The postulate of conservation of mass says that

d

dt

∫
R(m)

ρ dV = 0 (1.3.1-1)

Notice that, like the material particle introduced in Section 1.1,massis a primitive concept.
Rather than defining mass, we describe its properties. We have just examined its most
important property: It is conserved. In addition, I will require that

ρ > 0 (1.3.1-2)

and that the mass density be a frame-indifferent scalar,

ρ∗ = ρ (1.3.1-3)

Our next objective will be to determine a relationship that expresses the idea of conserva-
tion of mass at each point in a material. To do this, we will find it necessary to interchange
the operations of differentiation and integration in (1.3.1-1). Yet the limits on this integral
describe the boundaries of the body in its current configuration and generally are functions
of time. The next section explores this problem in more detail.

1.3.2 Transport Theorem

Let us consider the operation

d

dt

∫
R(m)

9 dV


