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1.1 Introduction

Learning and using a new technique always takes time. Even if the question

initially seems very straightforward, inevitably technicalities rudely intrude.

Therefore before a researcher decides to use the methods information theory

provides, it is worth ®nding out if these set of tools are appropriate for the

task in hand.

In this chapter I will therefore provide only a few important formulae and

no rigorous mathematical proofs (Cover and Thomas (1991) is excellent in

this respect). Neither will I provide simple ``how to'' recipes (for the psychol-

ogist, even after nearly 40 years, Attneave (1959) is still a good introduction).

Instead, it is hoped to provide a non-mathematical introduction to the basic

concepts and, using examples from the literature, show the kind of questions

information theory can be used to address. If, after reading this and the

following chapters, the reader decides that the methods are inappropriate,

he will have saved time. If, on the other hand, the methods seem potentially

useful, it is hoped that this chapter provides a simplistic overview that will

alleviate the growing pains.

1.2 What Is Information Theory?

Information theory was invented by Claude Shannon and introduced in his

classic book The Mathematical Theory of Communication (Shannon and

Weaver, 1949). What then is information theory? To quote three previous

authors in historical order:
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The ``amount of information'' is exactly the same concept that we talked about for

years under the name ``variance''. [Miller, 1956]

The technical meaning of ``information'' is not radically different from the everyday

meaning; it is merely more precise. [Attneave, 1959]

The mutual information I�X;Y� is the relative entropy between the joint distribution

and the product distribution p�x�p�y�, i.e.,

I�X;Y� �
X
x2X

X
y2Y

log
p�x; y�
p�x�p�y�

[Cover and Thomas, 1991]

Information theory is about measuring things, in particular, how much
measuring one thing tells us about another thing that we did not know
before. The approach information theory makes to measuring information
is to ®rst de®ne a measure of how uncertain we are of the state of the world.
We then measure how less uncertain we are of the state of the world after we
have made some measurement (e.g. observing the output of a neuron; asking
a question; listening to someone speak). The difference between our uncer-
tainty before and the uncertainty after making a measurement we then de®ne
as the amount of information that measurement gives us. As can be seen, this
approach depends critically on our approach to measuring uncertainty, and
for this information theory uses entropy. To make our description more
concrete, the concepts of entropy, and later information, will be illustrated
using a rather arti®cial scenario: one person has randomly ¯ipped to a page
of this book, and another has to use yes/no questions (I said it was arti®cial)
to work out some aspect of the page in question (for instance the page
number or the author of the chapter).

Entropy

The ®rst important aspect to quantify is how ``uncertain'' we are about the
input we have before we measure it. There is much less to communicate
about the page numbers in a two-page pamphlet than in the Encyclopedia

Britannica and, as the measure of this initial uncertainty, entropy measures
how many yes/no questions would be required on average to guess the state
of the world. Given that all pages are equally likely, the number of yes/no
questions required to guess the page ¯ipped to in a two-page pamphlet would
be 1, and hence this would have an entropy (uncertainty) of 1 bit. For a 1024
(210) page book, 10 yes/no questions are required on average and the entropy
would be 10 bits. For a one-page book, you would not even need to ask a
question, so it would have 0 bits of entropy. As well as the number of
questions required to guess a signal, the entropy also measures the smallest
possible size that the information could be compressed to.

2 Roland Baddeley



The simplest situation and one encountered in many experiments is where

all possible states of the world are equally likely (in our case, the ``page

¯ipper'' ¯ips to all pages with equal probability). In this case no compression

is possible and the entropy (H) is equal to:

H � log2 N �1:1�

where N is the number of possible states of the world, and log2 means that

the logarithm is to the base 2.1 Simply put, the more pages in a book, the

more yes/no questions required to identify the page and the higher the

entropy. But rather than work in a measuring system based on ``number of

pages'', we work with logarithms. The reason for this is simply that in many

cases we will be dealing with multiple events. If the ``page ¯ipper'' ¯ips twice,

the number of possible combinations of word pages would be N �N (the

numbers of states multiply). If instead we use logarithms, then the entropy of

two-page ¯ips will simply be the sum of the individual entropies (if the

number of states multiply, their logarithms add). Addition is simpler than

multiplication so by working with logs, we make subsequent calculations

much simpler (we also make the numbers much more manageable; an

entropy of 25 bits is more memorable than a system of 33,554,432 states).

When all states of the world are not equally likely, then compression is

possible and fewer questions need (on average) to be asked to identify an

input. People often are biased page ¯ippers, ¯ipping more often to the middle

pages. A clever compression algorithm, or a wise asker of questions can use

this information to take, on average, fewer questions to identify the given

page. One of the main results of information theory is that given knowledge

of the probability of all events, the minimum number of questions on average

required to identify a given event (and smallest that the thing can be com-

pressed) is given by:

H�X� �
X

p�x� log2
1

p�x� �1:2�

where p�x� is the probability of event x. If all events are equally likely, this

reduces to equation 1.1. In all cases the value of equation 1.2 will always be

equal to (if all states are equally likely), or less than (if the probabilities are

not equal) the entropy as calculated using equation 1.1. This leads us to call a

distribution where all states are equally likely a maximum entropy distribu-

tion, a property we will come back to later in Section 1.5.

1.2. What Is Information Theory? 3

1 Logarithms to the base 2 are often used since this makes the ``number of yes/no'' interpretation

possible. Sometimes, for mathematical convenience, natural logarithms are used and the resulting

measurements are then expressed in nats. The conversion is simple with 1 bit � log�e�= log�2�
nats � 0:69314718 nats.



Information

So entropy is intuitively a measure of (the logarithm of) the number of states
the world could be in. If, after measuring the world, this uncertainty is
decreased (it can never be increased), then the amount of decrease tells us
how much we have learned. Therefore, the information is de®ned as the
difference between the uncertainty before and after making a measurement.
Using the probability theory notation of P�X jY� to indicate the probability
of X given knowledge of Y (conditional on), the mutual information
(I�X;Y�) between a measurement X and the input Y can be de®ned as:

I�X;Y� � H�X� ÿH�XjY� �1:3�
With a bit of mathematical manipulation, we can also get the following

de®nitions where H�X;Y� is the entropy of all combination of inputs and
outputs (the joint distribution):

I�X;Y� �
H�X� ÿH�XjY� �a�
H�Y� ÿH�Y jX� �b�
H�X� �H�Y� ÿH�X;Y� �c�

8<: �1:4�

1.3 Why Is This Interesting?

In the previous section, we have informally de®ned information but left
unanswered the question of why information theory would be of any use
in studying brain function. A number of reasons have inspired its use includ-
ing:

Information Theory Can Be Used as a Statistical Tool. There are a number of
cases where information-theoretic tools are useful simply for the statistical
description or modelling of data. As a simple measure of association of two
variables, the mutual information or a near relative (Good, 1961; Press et al.,
1992) can be applied to both categorical and continuous signals and produces
a number that is on the same scale for both. While correlation is useful for
continuous variables (and if the variables are Gaussian, will produce very
similar results), it is not directly applicable to categorical data. While �2 is
applicable to categorical data, all continuous data needs to be binned. In
these cases, information theory provides a well founded and general measure
of relatedness.

The use of information theory in statistics also provides a basis for the
tools of (non-linear) regression and prediction. Traditionally regression
methods minimise the sum-squared error. If instead we minimise the
(cross) entropy, this is both general (it can be applied to both categorical
and continuous outputs), and if used as an objective for neural networks,
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maximising information (or minimising some related term) can result in
neural network learning algorithms that are much simpler; theoretically
more elegant; and in many cases appear to perform better (Ackley et al.,
1985; Bishop, 1995).

Analysis of Informational Bottlenecks. While many problems are, for theore-
tical and practical reasons, not amenable to analysis using information the-
ory, there are cases where a lot of information has to be communicated but
the nature of the communication itself places strong constraints on transmis-
sion rates. The time-varying membrane potential (a rich informational
source) has to be communicated using only a stream of spikes. A similar
argument applies to synapses, and to retinal ganglion cells communicating
the incoming light pattern to the cortex and beyond. The rate of speech
production places a strong limit on the rate of communication between
two people who at least sometimes think faster than they can speak. Even
though a system may not be best thought of as simply a communication
system, and all information transmitted may not be used, calculating trans-
mitted information places constraints on the relationship between two sys-
tems. Looking at models that maximise information transmission may
provide insight into the operation of such systems (Atick, 1992a; Linsker,
1992; Baddeley et al., 1997).

1.4 Practical Use of Information Theory

The previous section brie¯y outlined why, in principle, information theory
might be useful. That still leaves the very important practical question of how
one could measure it. Even in the original Shannon and Weaver book
(Shannon and Weaver, 1949), a number of methods were used. To give a
feel for how mutual information and entropy can be estimated, this section
will describe a number of different methods that have been applied to pro-
blems in brain function.

Directly Measuring Discrete Probability Distributions

The most direct and simply understood method of measuring entropy and
mutual information is to directly estimate the appropriate probability dis-
tributions (P�input�, P�output� and P�input and output�). This is concep-
tually straightforward and, given enough data, a reasonable method.

One example of an application where this method is applicable was
inspired by the observation that people are very bad at random number
generation. People try and make sequences ``more random'' than real ran-
dom numbers by avoiding repeats of the same digit; they also, under time
pressure, repeat sequences. This ability to generate random sequences has

1.4. Practical Use of Information Theory 5



therefore been used as a measure of cognitive load (Figure 1.1), where

entropy has been used as the measure of randomness (Baddeley, 1956).

The simplest estimators were based on simple letter probabilities and in

this case it is very possible to directly estimate the distribution (we only

have 26 probabilities to estimate). Unfortunately, methods based on simple

probability estimation will prove unreliable when used to estimate, say, letter

pair probabilities (a statistic that will be sensitive to some order information).

In this case there are 676 (262) probabilities to be estimated, and subjects'

patience would probably be exhausted before enough data had been collected

to reliably estimate them. Note that even when estimating 26 probabilities,

entropy will be systematically underestimated (and information overesti-

mated) if we only have small amounts of data. Fortunately, simple methods

to remove such an ``under-sampling bias'' have been known for a long time

(Miller, 1955).

Of great interest in the 1960s was the measuring of the ``capacity'' of

various senses. The procedure varied in detail, but was essentially the

same: the subjects were asked to label stimuli (say, tones of different frequen-

cies) with different numbers. The mutual information between the stimuli

and the numbers assigned by the subjects was then calculated with different

numbers of stimuli presented (see Figure 1.2). Given only two stimuli, a

subject would almost never make a mistaken identi®cation, but as the num-

ber of stimuli to be labelled increased, subjects started to make mistakes. By

estimating where the function relating mutual information to the number of

6 Roland Baddeley
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Figure 1.1. The most straightforward method to calculate entropy or mutual informa-
tion is direct estimation of the probability distributions (after Baddeley, 1956). One case
where this is appropriate is in using the entropy of subjects' random number generation
ability as a measure of cognitive load. The subject is asked to generate random digit
sequences in time with a metronome, either as the only task, or while simultaneously
performing a task such as card sorting. Depending on the dif®culty of the other task and
the speed of generation, the ``randomness'' of the digits will decrease. The simplest way
to estimate entropy is to estimate the probability of different letters. Using this measure
of entropy, redundancy (entropy/maximum entropy) decreases linearly with generation
time, and also with the dif®culty of the other task. This has subsequently proved a very
effective measure of cognitive load.



input categories asymptotes, an estimate of subjects channel capacity can be
made. Surprisingly this number is very small ± about 2.5 bits. This capacity
estimate approximately holds for a large number of other judgements: loud-
ness (2.3 bits), tastes (1.9 bits), points on a line (3.25 bits), and this leads to
one of the best titles in psychology ± the ``seven plus or minus two'' of Miller
(1956) refers to this small range (between 2.3 bits (log2 5) and 3.2 bits
(log2 9)).

Again in these tasks, since the number of labels usable by subjects is small,
it is very possible to directly estimate the probability distributions with rea-
sonable amounts of data. If instead subjects were reliably able to label 256
stimuli (8 bits as opposed to 2.5 bits capacity), we would again get into
problems of collecting amounts of data suf®cient to specify the distributions,
and methods based on the direct estimation of probability distributions
would require vast amounts of subjects' time.

Continuous Distributions

Given that the data are discrete, and we have enough data, then simply
estimating probability distributions presents few conceptual problems.
Unfortunately if we have continuous variables such as membrane potentials,
or reaction times, then we have a problem. While the entropy of a discrete
probability distribution is ®nite, the entropy of any continuous variable is

1.4. Practical Use of Information Theory 7
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Figure 1.2. Estimating the ``channel capacity'' for tone discrimination (after Pollack,
1952, 1953). The subject is presented with a number of tones and asked to assign
numeric labels to them. Given only three tones (A), the subject has almost perfect
performance, but as the number of tones increase (B), performance rapidly deteriorates.
This is not primarily an early sensory constraint, as performance is similar when the
tones are tightly grouped (C). One way to analyse such data is to plot the transmitted
information as a function of the number of input stimuli (D). As can be seen, up until
about 2.5 bits, all the available information is transmitted, but when the input informa-
tion is above 2.5 bits, the excess information is lost. This limited capacity has been found
for many tasks and was of great interest in the 1960s.



in®nite. One easy way to see this is that using a single real number between 0
and 1, we could very simply code the entire Encyclopedia Britannica. The ®rst
two digits after the decimal place could represent the ®rst letter; the second
two digits could represent the second letter, and so on. Given no constraint
on accuracy, this means that the entropy of a continuous variable is in®nite.

Before giving up hope, it should be remembered that mutual information
as speci®ed by equation 1.4 is the difference between two entropies. It turns
out that as long as there is some noise in the system (H�XjY� > 0), then the
difference between these two in®nite entropies is ®nite. This makes the role of
noise vital in any information theory measurement of continuous variables.

One particular case is if both the signal and noise are Gaussian (i.e.
normally) distributed. In this case the mutual information between the signal
(s) and the noise-corrupted version (sn) is simply:

I�s; sn� �
1

2
log2 1� �

2
signal

�2noise

 !
�1:5�

where �2signal is the variance of the signal, and �
2
noise is the variance of the noise.

This has the expected characteristics: the larger the signal relative to the noise,
the larger the amount of information transmitted; a doubling of the signal will
result in an approximately 1 bit increase in information transmission; and the
information transmitted will be independent of the unit of measurement.

It is important to note that the above expression is only valid when both
the signal and noise are Gaussian. While this is often a reasonable and
testable assumption because of the central limit theorem (basically, the
more things we add, usually the more Gaussian the system becomes), it is
still only an estimate and can underestimate the information (if the signal is
more Gaussian than the noise) or overestimate the information (if the noise is
more Gaussian than the signal).

A second problem concerns correlated signals. Often a signal will have
structure ± for instance, it could vary only slowly over time. Alternatively,
we could have multiple measurements. If all these measurements are inde-
pendent, then the situation is simple ± the entropies and mutual informations
simply add. If, on the other hand, the variables are correlated across time,
then some method is required to take these correlations into account. In an
extreme case if all the measurements were identical in both signal and noise,
the information from one such measurement would be the same as the com-
bined information from all: it is important to in some way deal with these
effects of correlation.

Perhaps the most common way to deal with this ``correlated measure-
ments'' problem is to transform the signal to the Fourier domain. This
method is used in a number of papers in this volume and the underlying
logic is described in Figure 1.3.

8 Roland Baddeley



The Fourier transform method always uses the same representation (in

terms of sines and cosines) independent of the data. In some cases, especially

when we do not have that much data, it may be more useful to choose a

representation which still has the uncorrelated property of the Fourier com-

ponents, but is optimised to represent a particular data set. One plausible

candidate for such a method is principal components analysis. Here a new set

of measurements, based on linear transformation of the original data, is used

to describe the data. The ®rst component is the linear combination of the

original measurements that captures the maximum amount of variance. The

second component is formed by a linear combination of the original mea-

surements that captures as much of the variance as possible while being

orthogonal to the ®rst component (and hence independent of the ®rst com-

ponent if the signal is Gaussian). Further components can be constructed in a

similar manner. The main advantage over a Fourier-based representation is

1.4. Practical Use of Information Theory 9
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Figure 1.3. Taking into account correlations in data by transforming to a new repre-
sentation. (A) shows a signal varying slowly as a function of time. Because the voltages
at different time steps are correlated, it is not possible to treat each time step as inde-
pendent and work out the information as the sum of the information values at different
time steps. One way to approach this problem is to transform the signal to a new
representation where all components are now uncorrelated. If the signal is Gaussian,
transforming to a Fourier series representation has this property. Here we represent the
original signal (A) as a sum of sines and cosines of different frequencies (B). While the
individual time measurements are correlated, if the signal is Gaussian, the amounts of
each Fourier components (C) will be uncorrelated. Therefore the mutual information
for the whole signal will simply be the sum of the information values for the individual
frequencies (and these can be calculated using equation 1.5).



that more of the signal can be described using fewer descriptors and thus less

data is required to estimate the characteristics of the signal and noise.

Methods based on principal-component-based representations of spikes

trains have been applied to calculating the information transmitted by cor-

tical neurons (Richmond and Optican, 1990).

All the above methods rely on an assumption of Gaussian nature of the

signal, and if this is not true and there exist non-linear relationships between

the inputs and outputs, methods based on Fourier analysis or principal

components analysis can only give rather inaccurate estimates. One method

that can be applied in this case is to use a non-linear compression method to

generate a compressed representation before performing the information

estimation (see Figure 1.4).
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Figure 1.4. Using non-linear compression techniques for generating compact represen-
tations of data. Linear principal components analysis can be performed using the neural
network shown in (A) where a copy of the input is used as the target output. On
convergence, the weights from the n input units to the h coding units will span the
same space as the ®rst h principal components and, given that the input is Gaussian,
the coding units will be a good representation of the signal. If, on the other hand, there
is non-Gaussian non-linear structure in the signals, this approach may not be optimal.
One possible approach to dealing with such non-linearity is to use a compression-based
algorithm to create a non-linear compressed representation of the signals. This can be
done using the non-linear generalisation of the simple network to allow non-linearities
in processing (shown in (B)). Again the network is trained to recreate its input from its
output, while transmitting the information through a bottleneck, but this time the data
is allowed to be transformed using an arbitrary non-linearity before coding. If there are
signi®cant non-linearities in the data, the representation provided by the bottleneck
units may provide a better representation of the input than a principal-components-
based representation. (After Fotheringhame and Baddeley, 1997.)



Estimation Using an ``Intelligent'' Predictor

Though the direct measurement of the probability distributions is concep-

tually the simplest method, often the dimensionality of the problem renders

this implausible. For instance, if interested in the entropy of English, one

could get better and better approximations by estimating the probability

distribution of letters, letter pairs, letter triplets, and so on. Even for letter

triplets, there is the probability of 273 � 19,683 possible three-letter combi-

nations to estimate: the amount of data required to do this at all accurately is

prohibitive. This is made worse because we know that many of the regula-

rities of English would only be revealed over groups of more than three

letters. One potential solution to this problem is available if we have access

to a good model of the language or predictor. For English, one source of a

predictor of English is a native speaker. Shannon (see Table 1.1) used this to

devise an ingenious method for estimating the entropy of English as

described in Table 1.1.

Even when we don't have access to such a good predictor as an English

language speaker, it often simpler to construct (or train) a predictor rather

than to estimate a large number of probabilities. This approach to estimating

mutual information has been applied (Heller et al., 1995) to estimation of the

visual information transmission properties of neurons in both the primary

visual cortex (also called V1; area 17; or striate cortex) and the inferior

temporal cortex (see Figure 1.5). Essentially the spikes generated by neurons

when presented various stimuli were coded in a number of different ways (the
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Table 1.1. Estimating the entropy of English using an intelligent predictor (after Shannon,
1951).

T H E R E I S N O R E V E R S E

1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2

O N A M O T O R C Y C L E

1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1

Above is a short passage of text. Underneath each letter is the number of guesses required by a

person to guess that letter based only on knowledge of the previous letters. If the letters were

completely random (maximum entropy and no redundancy), the best predictor would take on

average 27/2 guesses (26 letters and a space) for every letter. If, on the other hand, there is complete

predictability, then a predictor would only require only one guess per letter. English is between

these two extremes and, using this method, Shannon estimated an entropy per letter of between 1.6

and 0.6 bits per letter. This contrasts with log 27 � 4:76 bits if every letter was equally likely and

independent. Technical details can be found in Shannon (1951) and Attneave (1959).



average ®ring rate, vectors representing the presence and absence of spikes,
various low-pass-®ltered versions of the spike train, etc). These codi®ed spike
trains were used to train a neural network to predict the visual stimulus that
was presented when the neurons generated these spikes. The accuracy of
these predictions, given some assumptions, can again be used to estimate
the mutual information between the visual input and the differently coded
spike trains estimated. For these neurons and stimuli, the information trans-
mission is relatively small (� 0.5 bits sÿ1).

Estimation Using Compression

One last method for estimating entropy is based on Shannon's coding theo-
rem, which states that the smallest size that any compression algorithm can
compress a sequence is equal to its entropy. Therefore, by invoking a number
of compression algorithms on the sample sequence of interest, the smallest
compressed representation can be taken as an upper bound on that sequen-
ce's entropy. Methods based on this intuition have been more common in
genetics, where they have been used to ask such questions as does ``coding''
DNA have higher or lower entropy than ``non-coding'' DNA (Farach et al.,
1995). (The requirements of quick convergence and reasonable computation
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Figure 1.5. Estimating neuronal information transfer rate using a neural network based
predictor (after Heller et al., 1995). A collection of 32 4�4 Walsh patterns (and their
contrast reversed versions) (A) were presented to awake Rhesus Macaque monkeys, and
the spike trains generated by neurons in V1 and IT recorded (B and C). Using differ-
ently coded versions of these spike trains as input, a neural network (D) was trained
using the back-propagation algorithm to predict which Walsh pattern was presented.
Intuitively, if the spike train contains a lot of information about the input, then an
accurate prediction is possible, while if there is very little information then the spike
train will not allow accurate prediction of the input. Notice that (1) the calculated
information will be very dependent on the choice (and number of) of stimuli, and (2)
even though we are using a predictor, implicitly we are still estimating probability
distributions and hence we require large amounts of data to accurately estimate the
information. Using this method, it was claimed that the neurons only transmitted small
amounts of information (� 0:5 bits), and that this information was contained not in the
exact timing of the spikes, but in a local ``rate''.



time mean that only the earliest algorithms simply performed compression,
but the concept behind later algorithms is essentially the same.)

More recently, this compression approach to entropy estimation has been
applied to automatically calculating linguistic taxonomies (Figure 1.6). The
entropy was calculated using a modi®ed compression algorithm based on
Farach et al. (1995). Cross entropy was estimated using the compressed
length when the code book derived for one language was used to compress
another. Though methods based on compression have not been commonly
used in the theoretical neuroscience community (but see Redlich, 1993), they
provide at least interesting possibilities.

1.5 Maximising Information Transmission

The previous section was concerned with simply measuring entropy and
information. One other proposal that has received a lot of attention recently
is the proposition that some cortical systems can be understood in terms of
them maximising information transmission (Barlow, 1989). There are a num-
ber of reasons supporting such an information maximisation framework:

Maximising the Richness of a Representation. The richness and ¯exibility of
the responses to a behaviourally relevant input will be limited by the number
of different states that can be discriminated. As an extreme case, a protozoa
that can only discriminate between bright and dark will have less ¯exible
navigating behaviour than an insect (or human) that has an accurate repre-
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"I hereby undertake not
to remove from the 
library, or to mark, deface,
or injure in anyway, any 
volume, document, or
other object belonging
to it or in its custody;

Library or kindle ........"

Figure 1.6. Estimating entropies and cross entropies using compression-based techni-
ques. The declaration of the Bodleian Library (Oxford) has been translated into more
than 50 languages (A). The entropy of these letter sequences can be estimated using the
size of a compressed version of the statement. If the code book derived by the algorithm
for one language is used to code another language, the size of the code book will re¯ect
the cross entropy (B). Hierarchical minimum distance cluster analysis, using these cross
entropies as a distances, can then be applied to this data (a small subset of the resulting
tree is shown (C)). This method can produce an automatic taxonomy of languages, and
has been shown to correspond very closely to those derived using more traditional
linguistic analysis (Juola, P., personal communication).



sentation of the grey-level structure of the visual world. Therefore, heuristi-
cally, evolution will favour representations that maximise information trans-

mission, because these will maximise the number of discriminable states of
the world.

As a Heuristic to Identify Underlying Causes in the Input. A second reason is

that maximising information transmission is a reasonable principle for gen-
erating representations of the world. The pressure to compress the world

often forces a new representation in terms of the actual ``causes'' of the
images (Olshausen and Field, 1996a). A representation of the world in

terms of edges (the result of a number of information maximisation algo-
rithms when applied to natural images, see for instance Chapter 5), may well

be easier to work with than a much larger and redundant representation in
terms of the raw intensities across the image.

To Allow Economies to be Made in Space, Weight and Energy. By having a

representation that is ef®cient at transmitting information, it may be possible
to economise on some other of the system design. As described in Chapter 3,

an insect eye that transmits information ef®ciently can be smaller and lighter,
and can consume less energy (both when operating and when being trans-

ported). Such ``energetic'' arguments can also be applied to, say, the trans-
mission of information from the eye to the brain, where an inef®cient

representation would require far more retinal ganglion cells, would take
signi®cantly more space in the brain, and use a signi®cantly larger amount

of energy.

As a Reasonable Formalism for Describing Models. The last reason is more

pragmatic and empirical. The quantities required to work out how ef®cient a
representation is, and the nature of a representation that maximises informa-

tion transmission, are measurable and mathematically formalisable. When
this is done, and the ``optimal'' representations compared to the physiologi-

cal and psychophysical measurements, the correspondence between these
optimal representations and those observed empirically is often very close.

This means that even if the information maximisation approach is only
heuristic, it is still useful in summarising data.

How then can one maximise information transmission? Most approaches

can be understood in terms of a combination of three different strategies:

. Maximise the number of effective measurements by making sure that each
measurement tells us about a different thing.

. Maximise the signal whilst minimising the noise.

. Subject to the external constraints placed on the system, maximise the

ef®ciency of the questions asked.

14 Roland Baddeley



Maximising the Effective Number of Questions

The simplest method of increasing information transmission is to increase the

number of measurements made: someone asking 50 questions concerning the

page ¯ipped to in a book has more chance of identifying it than someone who

asks one question. Again an eye connected by a large number of retinal

ganglion cells to later areas should send more information than the single

ganglion cell connected to an eyecup of a ¯atworm.

This insight is simple enough not to rely on information theory, but the

raw number of measurements is not always equivalent to the ``effective''

number of measurements. If given two questions to identify a page in the

book ± if the ®rst one was ``Is it between pages 1 and 10?'' then a second of

``Is it between 2 and 11?'' would provide remarkably little extra information.

In particular, given no noise, the maximum amount of information can be

transmitted if all measurements are independent of each other.

A similar case occurs in the transmission of information about light enter-

ing the eye. The outputs of two adjacent photoreceptors will often be mea-

suring light coming from the same object and therefore send very correlated

signals. Transmitting information to later stages simply as the output of

photoreceptors would therefore be very inef®cient, since we would be sending

the same information multiple times. One simple proposal for transforming

the raw retinal input before transmitting it to later stages is shown in Figure

1.7, and has proved successful in describing a number of facts about early

visual processing (see Chapter 3).
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Figure 1.7. Maximising information transmission by minimising redundancy. In most
images, (A) the intensity arriving at two locations close together in the visual ®eld will
often be very similar, since it will often originate from the same object. Sending infor-
mation in this form is therefore very inef®cient. One way to improve the ef®ciency of
transmission is not to send the pixel intensities, but the difference between the intensity
at a location and that predicted from the nearby photoreceptors. This can be achieved
by using a centre surround receptive ®eld as shown in (B). If we transmit this new
representation (C), far less channel capacity is used to send the same amount of infor-
mation. Such an approach seems to give a good account of the early spatial ®ltering
properties of insect (Srinivasan et al., 1982; van Hateren, 1992b) and human (Atick,
1992b; van Hateren, 1993) visual systems.



Guarding Against Noise

The above ``independent measurement'' argument is only true to a point.
Given that the person you ask the question of speaks clearly, then ensuring
that each measurement tells you about a different thing is a reasonable
strategy. Unfortunately, if the person mumbles, has a very strong accent,
or has possibly been drinking too much, we could potentially miss the answer
to our questions. If this happens, then because each question is unrelated to
the others, an incorrect answer cannot be detected by its relationship to other
questions, nor can they be used to correct the mistake. Therefore, in the
presence of noise, some redundancy can be helpful to (1) detect corrupted
information, and (2) help correct any errors. As an example, many non-
native English speakers have great dif®culty in hearing the difference between
the numbers 17 and 70. In such a case it actually might be worth asking ``is
the page above seventy'' as well as ``is it above ®fty'' since this would provide
some guard against confusion of the word seventy. This may also explain the
charming English habit of shouting loudly and slowly to foreigners.

The appropriate amount of redundancy will depend on the amount of
noise: the amount of redundancy should be high when there is a lot of
noise, and low when there is little. Unfortunately this can be dif®cult to
handle when the amount of noise is different at different times, as in the
retina. Under a bright illuminant, the variations in image intensity (the sig-
nal) will be much larger than the variations due to the random nature of
photon arrival or the unreliability of synapses (the noise). On the other hand,
for very low light conditions this is no longer the case, with the variations due
to the noise now relatively large. If the system was to operate optimally, the
amount of redundancy in the representation should change at different illu-
mination levels. In the primate visual system, the spatial frequency ®ltering
properties of the ``retinal ®lters'' change as a function of light level, consistent
with the retina maximising information transmission at different light levels
(Atick, 1992b).

Making Ef®cient Measurements

The last way to maximise information transmission is to ensure not only that
all measurements measure different things, and noise is dealt with effectively,
but also that the measurements made are as informative as possible, subject
to the constraints imposed by the physics of the system.

For binary yes/no questions, this is relatively straightforward. Consider
again the problem of guessing a page in the Encyclopedia Britannica. Asking
the question ``Is it page number 1?'' is generally not a good idea ± if you
happen to guess correctly then this will provide a great deal of information
(technically known as suprisal), but for the majority of the time you will
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know very little more. The entropy (and hence the maximum amount of
information transmission) is maximal when the uncertainty is maximal,
and this occurs when both alternatives are equally likely. In this case we
want questions where ``yes'' is has the same probability as ``no''. For instance
a question such as ``Is it in the ®rst or second half of the book?'' will generally
tell you more than ``Is it page 2?''. The entropy as a function of probability is
shown for a yes/no system (binary channel) in Figure 1.8.

When there are more possible signalling states than true and false, the
constraints become much more important. Figure 1.9 shows three of the
simplest cases of constraints and the nature of the outputs (if we have no
noise) that will maximise information transmission. It is interesting to note
that the spike trains of neurons are exponentially distributed as shown in
Figure 1.9(C), consistent with maximal information transmission subject to
an average ®ring rate constraint (Baddeley et al., 1997).

1.6 Potential Problems and Pitfalls

The last sections were essentially positive. Unfortunately not all things about
information theory are good:

The Huge Data Requirement. Possibly the greatest problem with information
theory is its requirement for vast amounts of data if the results are to tell us
more about the data than about the assumptions used to calculate its value.
As mentioned in Section 1.4, estimating the probability of every three-letter
combination in English would require suf®cient data to estimate 19,683 dif-
ferent probabilities. While this may actually be possible given the large num-
ber of books available electronically, to get a better approximation to
English, (say, eight-letter combinations), the amount of data required
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Figure 1.8. The entropy of a binary random (Bernoulli) variable is a function of its
probability and maximum when its probability is 0.5 (when it has an entropy of 1 bit).
Intuitively, if a measurement is always false (or always true) then we are not uncertain of
its value. If instead it is true as often as not, then the uncertainty, and hence the entropy,
is maximised.



becomes completely unrealistic. Problems of this form are almost always

present when applying information theory, and often the only way to pro-

ceed is to make assumptions which are possibly unfounded and often dif®cult

to test. Assuming true independence (very dif®cult to verify even with large

data sets), and assuming a Gaussian signal and noise can greatly cut down on

the number of measurements required. However, these assumptions often

remain only assumptions, and any interpretations of the data rest strongly

on them.

Information and Useful Information. Information theory again only mea-

sures whether there are variations in the world that can be reliably discri-

minated. It does not tell us if this distinction is of any interest to the

animal. As an example, most information-maximisation-based models of

low-level vision assume that the informativeness of visual information is

simply based on how much it varies. Even at the simplest level, this is

dif®cult to maintain as variation due to, say, changes in illumination is

often of less interest than variations due to changes in re¯ectance, while

the variance due to changes in illumination is almost always greater than

that caused by changes in re¯ectance. While the simple ``variation equals

information'' may be a useful starting point, after the mathematics starts it

is potentially easy to forget that it is only a ®rst approximation, and one

can be led astray.
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Figure 1.9. The distribution of neuronal outputs consistent with optimal information
transmission will be determined by the most important constraints operating on that
neuron. First, if a neuron is only constrained by its maximum and minimum output,
then the maximum entropy, and therefore the maximum information that could be
transmitted, will occur when all output states are equally likely (A) (Laughlin, 1981).
Second, a constraint favoured for mathematical convenience is that the power (or
variance) of the output states is constrained. Given this, entropy is maximised for a
Gaussian ®ring rate distribution (B). Third, if the constraint is on the average ®ring
rate of a neuron, higher ®ring rates will be more ``costly'' than low ®ring rates, and an
exponential distribution of ®ring rates would maximise entropy (C). Measurements
from V1 and IT cells show that neurons in these areas have exponentially distributed
outputs when presented with natural images (Baddeley et al., 1997), and hence are at
least consistent with maximising information transmission subject to an average rate
constraint.



Coding and Decoding. A related problem is that information theory tells us if

the information is present, but does not describe whether, given the compu-

tational properties of real neurons, it would be simple for neurons to extract.

Caution should therefore be expressed when saying that information present

in a signal is information available to later neurons.

Does the Receiver Know About the Input? Information theory makes some

strong assumptions about the system. In particular it assumes that the recei-

ver knows everything about the statistics of the input, and that these statistics

do not change over time (that the system is stationary). This assumption of

stationarity is often particularly unrealistic.

1.7 Conclusion

In this chapter it was hoped to convey an intuitive feel for the core concepts

of information theory: entropy and information. These concepts themselves

are straightforward, and a number of ways of applying them to calculate

information transmission in real systems were described. Such examples are

intended to guide the reader towards the domains that in the past have

proved amenable to information theoretic techniques. In particular it is

argued that some aspects of cortical computation can be understood in the

context of maximisation of transmitted information. The following chapters

contain a large number of further examples and, in combination with Cover

and Thomas (1991) and Rieke et al. (1997), it is hoped that the reader will

®nd this book helpful as a starting point in exploring how information theory

can be applied to new problem domains.
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