
Computational Nonlinear
Morphology

With Emphasis on Semitic Languages

George Anton Kiraz
Beth Mardutho: The Syriac Institute

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

c© Cambridge University Press 2001

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2001

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times Roman 10/12 pt. System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Kiraz, George Anton.
Computational nonlinear morphology : with emphasis on Semitic languages/George

Anton Kiraz.
p. cm. – (Studies in natural language processing)

Includes bibliographical references and index.
ISBN 0-521-63196-3
1. Grammar, Comparative and general – Morphology – Data processing. 2. Semitic

languages – Morphology – Data processing. I. Title. II. Series.

P241 .K538 2001
492′.045′0285 – dc21

2001022304
ISBN 0 521 63196 3 hardback

Contents

Preface page xiii

Abbreviations and Acronyms xvii

Transliteration of Semitic xix

Errata and Corrigenda xxi

1 Introduction 1
1.1 Linguistic Preliminaries 1

1.1.1 Morphology 2
1.1.2 Regular Languages 6
1.1.3 Context-Free Languages 11

1.2 Computational Preliminaries 15
1.2.1 Computational Morphology 15
1.2.2 Finite-State Automata 16
1.2.3 Regular Operations and Closure

Properties 19
1.2.4 Finite-State Morphology 20

1.3 Semitic Preliminaries 25
1.3.1 The Semitic Family 25
1.3.2 Semitic Morphology 27
1.3.3 The Writing System 29
1.3.4 Transliteration 30

1.4 Further Reading 30

2 Survey of Semitic Nonlinear Morphology 32
2.1 The CV Approach 33
2.2 The Moraic Approach 37
2.3 The Affixational Approach 40
2.4 The Broken Plural 41
2.5 Beyond the Stem 44

2.5.1 Morphotactics 44
2.5.2 Phonological Effects 45

ix

x Contents

3 Survey of Finite-State Morphology 47
3.1 The Finite-State Approach 47

3.1.1 Kay and Kaplan’s Cascade Model (1983) 47
3.1.2 Koskenniemi’s Two-Level Model (1983) 49

3.2 Developments in Two-Level Formalisms 51
3.2.1 Bear’s Proposals (1986, 1988) 51
3.2.2 Black et al.’s Formalism (1987) 52
3.2.3 Ruessink’s Formalism (1989) 53
3.2.4 Pulman and Hepple’s Feature

Representation (1993) 54
3.2.5 Carter’s Note on Obligatory Rules (1995) 56
3.2.6 Redefining Obligatoriness: Grimley-Evans,

Kiraz, and Pulman (1996) 57

4 Survey of Semitic Computational Morphology 59
4.1 Kay’s Approach to Arabic (1987) 59
4.2 Kataja and Koskenniemi’s Approach to

Akkadian (1988) 61
4.3 Beesley’s Approach to Arabic (1989, 1990, 1991) 62
4.4 Kornai’s Linear Coding (1991) 63
4.5 Bird and Ellison’s One-Level Approach

(1992, 1994) 64
4.6 Wiebe’s Multilinear Coding (1992) 65
4.7 Pulman and Hepple’s Approach to Arabic

(1993) 66
4.8 Narayanan and Hashem’s Three-Level

Approach (1993) 66
4.9 Beesley’s Intersection Approach 67
4.10 Where to Next? 68

5 A Multitier Nonlinear Model 69
5.1 Overall Description 69
5.2 The Lexicon Component 71

5.2.1 Intuitive Description 71
5.2.2 Formal Description 72

5.3 The Rewrite Rules Component 73
5.3.1 Intuitive Description 73
5.3.2 Formal Description 75

5.4 The Morphotactic Component 80
5.4.1 Regular Morphotactics 80
5.4.2 Context-Free Morphotactics 82

5.5 Extensions to the Formalism 86
5.5.1 Other Formalisms and Notations 86
5.5.2 Grammatical Features 86

Contents xi

6 Modeling Semitic Nonlinear Morphology 90
6.1 The CV Approach 91

6.1.1 Lexicon 92
6.1.2 Rewrite Rules 94

6.2 The Moraic Approach 97
6.2.1 Lexicon 98
6.2.2 Rewrite Rules 99

6.3 The Affixational Approach 102
6.3.1 Lexicon 103
6.3.2 Rewrite Rules 104

6.4 The Broken Plural 106
6.4.1 Trisyllabic Plurals 107
6.4.2 Bisyllabic Plurals 109

6.5 Issues in Developing Semitic Systems 110
6.5.1 Linear versus Nonlinear Grammars 110
6.5.2 Vocalization 114
6.5.3 Diachronic Exceptions 115
6.5.4 Script-Related Issues 116

7 Compilation into Multitape Automata 121
7.1 Mathematical Preliminaries 121

7.1.1 Multitape Finite-State Automata 122
7.1.2 Regular Relations 123
7.1.3 n-Way Operations 124

7.2 Compiling the Lexicon Component 130
7.3 Compiling the Rewrite Rules Component 132

7.3.1 Preprocessing Rewrite Rules 133
7.3.2 Compiling Rewrite Rules 136
7.3.3 Incorporating Grammatical Features 141

7.4 Compiling the Morphotactic Component 142
7.5 Illustration from Syriac 143

7.5.1 Preprocessing 144
7.5.2 First Phase: Accepting Centers 144
7.5.3 Second Phase: Optional Rules 145
7.5.4 Third Phase: Obligatory Rules 146

8 Conclusion 149
8.1 Beyond Semitic 149
8.2 Directions for Further Research 150

8.2.1 Disambiguation 151
8.2.2 Semantics in Semitic Morphology 151
8.2.3 Coinage and Neologism 152
8.2.4 Linguistic Research 152

8.3 Future of Semitic Computational Linguistics 153

xii Contents

References 155

Quotation Credits 161

Language, Word, and Morpheme Index 163

Name Index 166

Subject Index 167

1 Introduction

as.-s.arf of words the deriving of words one from another, of winds shifting
from one direction to another, of wine drinking it.

al-Fayrûz Abâdı̂ (1329–1414)
al-qâmûs al-muh. ı̂t.

as.-s.arf The shifting a thing from one state, or condition, to another.
Lane’s Arabic-English Lexicon

Morphology The science of form.
Oxford English Dictionary

mor·phol·o·gy A study and description of word formation in a language
including inflection, derivation, and compounding.

Webster’s Third

This book might have a wide audience: computational linguists, theoretical and
applied linguists, Semitists, and – who knows – maybe Biblical scholars with inter-
est in Semitic. This is a mixed blessing. While it may serve as an interdisciplinary
text, it makes introducing the matter at hand an arduous task. Nevertheless, this
chapter attempts to introduce linguistic preliminaries to the nonlinguist, some com-
putational prerequisites to the noncomputer specialist, and the basics of Semitic
morphology to the nonsemitist. (To amuse the disappointed reader, I resorted to
using quotations at the beginning of each chapter and elsewhere, mostly from the
classical Semitic grammatical tradition. I hope this does not prove to be a further
disappointment!)

In the definition of terms below, use was made of Trask (1993) and Crystal
(1994). It must be noted that what follows is not intended to be an exhaustive
coverage of the topics at hand. It must also be stressed that linguists may not
necessarily, and often would not, agree with many of the definitions given here
(the day is still to come when linguists agree on a definition for what the term
“word” denotes). Definitions are given here in the context of the current work.

1.1 Linguistic Preliminaries

It has long been claimed that the morphology of many languages lies within the
expressiveness of a class of formal languages known as “regular languages,” and

1

2 Introduction

computational morphologists have taken up this claim. This section is an introduc-
tion to morphology (Section 1.1.1) and regular languages (Section 1.1.2). Another
class of formal languages, the class of context-free languages on which some
morphotactic models rely, is introduced as well (Section 1.1.3).

1.1.1 Morphology

1.1.1.1 Basic Definitions

Morphology is the branch of grammar that deals with the internal structure of
words (Matthews, 1974). Although linguists may argue for other definitions of
morphology, they mostly agree that morphology is the study of meaningful parts
of words (McCarthy, 1991). In the English word /boys/, for example, there are two
meaningful units: {boy} and the plural marker {s}. Such units, called morphemes,
are the smallest units of morphological analysis. (Morphemes are shown in braces,
{ }; and the phonological word in solidi, / /.)

Sometimes, morphemes are not easily detected. Like /boys/, the English word
/men/ is also a plural noun, but the plural morpheme in this case is embedded in the
vowel [e], as opposed to [a] in singular /man/. In fact, morphemes are considered
to be abstract units such as {PLURAL}. The {PLURAL} morpheme is realized in various
forms called morphs: [s] in /boys/ and the vowel [e] in /men/.

Morphs in turn are made of segments. For example, {boy} consists of the seg-
ments: [b], [o], and [y]. Unless it constitutes a morph, a segment is meaningless.
(Segments are shown in brackets, [].)

The morpheme that gives the main meaning of the word, for example, {boy} in
/boys/, is called the stem or root. A free morpheme can stand on its own. In such a
case, the morpheme and the word will be one and the same, for example, the word
/boy/ and the morpheme {boy}. A bound morpheme requires additional morphemes
to form a word, for example, the plural morpheme {s}.

Morphemes that precede the stem or root are called prefixes, such as {un} in
English /unusual/. Those that follow are called suffixes, such as {s} in /boys/. In
some languages, a morpheme may consist of two portions, neither of which is
meaningful on its own. The first portion acts as a prefix and the second as a suffix.
Such morphemes are called circumfixes. For example, in the Syriac word /neqt.lūn/
“to kill – IMPF PL 3RD MASC,” the circumfix is {ne-ūn} “PL 3RD MASC.”

The inventory of all morphs in a language constitutes the morphological lexicon.
A lexicon of English need not have entries for /move/, /moved/, /moving/, /cook/,
/cooked/, /cooking/, and so on. It only needs to list the unique morphs {move},
{cook}, {ed}, and {ing}. The suffixes apply to {move}, {cook}, and other verbs as
well.

The sequence of lexical entries that make up a word is the lexical form of the
word. For example, the lexical form of /moved/ is {move}β{ed}, where β denotes

1.1 Linguistic Preliminaries 3

a boundary symbol that separates lexical entries. The word itself as one sees it on
paper (or as one hears it), for example, /moved/, is called the surface form.

One important issue in morphology is conditional changes in morphemes. As
noted above, the English word /moved/ contains two morphemes: {move} and {ed}.
However, the [e] in {move} is deleted once the two morphemes are joined together.
In this case, the change is merely orthographic. In other cases, the change might
be phonologically motivated. For example, the nasal [n] in the negative morpheme
prefix {in} becomes [m] when followed by a labial such as [p]. Hence, English
/inactive/ from {in}β{active}, but /impractical/ from {in}β{practical}. Such changes
are expressed by rewrite rules, also called productions. The [n] to [m] change in
the above case may be expressed by the rule

n → m / p

which reads: [n] rewrites as [m] before [p].
How does one know that */edkill/, as oppose to /killed/, from the morphemes

{kill} and {ed}, is invalid? The licit combinations of morphemes are expressed by
another form of rewrite rules, which we shall call here morphotactic rules such as

word → stem suffix

which reads: “word” rewrites as “root” followed by “suffix.” Rewrite rules will be
introduced further in Section 1.1.2.3.

1.1.1.2 Linear versus Nonlinear Morphology

Apart from Syriac /neqt.lūn/, the examples given above share one characteristic.
The lexical form of a particular word is a sequence of morphemes from the lexi-
con. For example, the analysis of English /unsuccessful/ produces the lexical form
{un}β{success}β{ful}. Because the surface form is generated by the concatenation
of the lexical morphemes in question, this type of morphology is called concate-
native or linear morphology.

In many languages, linearity does not hold. Consider the Arabic verb /kutib/
“to write – PERF PASS.” This verb consists of at least two morphemes: the root
{ktb} “notion of writing” and the vocalic sequence {ui} “PERF PASS.” The concate-
nation of the two morphemes, */ktbui/ or */uiktb/, does not produce the desired
result. In this case, the morphemes are combined in a nonconcatenative, or non-
linear, manner. (It will be shown in the next chapter how a third somewhat ab-
stract morpheme dictates the manner in which the root and vocalic sequence are
joined.)

The most ubiquitous linguistic framework for describing nonlinear morphology
is based on the autosegmental model as applied to phonology (Goldsmith, 1976).
Autosegmental phonology offers a framework under which nonlinear phonological
(and morphological) phenomena can be described. Tense in Ngbaka, a language

4 Introduction

Table 1.1. Ngbaka tense
is marked by tone

Verb Tone

kpòlò low
kpōlō mid
kpòló low-high
kpóló high

of Zaire (the modern Republic of Congo), for example, is indicated by tone,
which is considered a morpheme in its own right. Consider the data in Table 1.1
(Nida, 1949). Each verb consists of two autonomous morphemes: {kpolo} “to
return” and the respective tense morpheme, which is indicated by a specific tone.

Under the autosegmental model, autonomous morphemes are graphically rep-
resented on separate tiers as shown in Fig. 1.1. Each morpheme sits on its own
autonomous tier: The morpheme {kpolo} sits on the lower tier, while the various
tone morphemes, {L} “low,” {M} “mid,” {LH} “low-high,” and {H} “high,” sit on
the upper tier. Association lines link segments from one tier to another. A pair of
tiers, linked by some association line, is called a chart.1

Association lines follow specific rules of association according to two stipula-
tions. The first stipulation is the Well-Formedness Condition: All vowels are asso-
ciated with at least one tone segment and all tone segments are associated with at
least one vowel segment, and association lines must not cross. The autosegmental
representations in Fig. 1.1 meet this condition. However, the ill-formed represen-
tations in Fig. 1.2 violate the Well-Formedness Condition: In Fig. 1.2(a), the last
vowel segment is not associated with a tone segment. In Fig. 1.2(b), the first tone
segment is not associated with a vowel. In Fig. 1.2(c), association lines cross.

The second stipulation is the language-specific Association Convention, which
states: Only the rightmost member of a tier can be associated with more than one
member of another tier. The association of one member of a tier to more than
one member of another tier is called spreading, for example, the spreading of the
tone morphemes {L}, {M}, and {H} in Fig. 1.1.

Fig. 1.1. Autosegmental representation of the Ngbaka tense in graphical form:
(a) /kpòlò/, (b) /kpōlō/, (c) /kpòló/, (d) /kpóló/. Each morpheme sits on its own
autonomous tier, with the stem on the lower tier and the respective tense tone
morpheme on the upper tier.

1 The term “chart” is mostly used in the computational linguistics literature, but not in the linguistic
literature.

1.1 Linguistic Preliminaries 5

Fig. 1.2. Ill-formed autosegmental representations: (a) the last [o] segment is not
linked; (b) the [L] tone segment is not linked; (c) association lines cross.

1.1.1.3 Between Phonology and Syntax

It was mentioned above that morphology is the branch of grammar that deals
with the internal structure of words. Two other branches of grammar interact with
morphology: phonology and syntax. The former concerns itself with the study of
the sound system of languages, while the latter deals with the rules under which
words combine to make sentences. Hence, phonology deals with units smaller than
morphemes, while syntax describes units larger than words.

One rarely speaks of morphology without reference to phonology. (The term
morphophonology denotes the phonological structure of morphemes.) One impor-
tant aspect of phonology, which can hardly be separated from any morphological
analysis of words, is phonological processes. These are conditional changes that
alter segments. Some of the processes mentioned in this book are as follows:
assimilation, in which one segment becomes identical to, or more like, another as
in [n] → [m] above (see p. 3); syncope, or deletion, as the deletion of the first [a] in
Syriac */qat.al/ → /qt.al/2 “to kill”; epenthesis, or insertion, as the insertion of / i/
in Arabic /nkatab/ → / inkatab/3 “to write – REFL”; and gemination, or doubling,
which involves the repetition of a segment (usually consonant) as in Arabic /katab/
→ /kattab/4 “to write – CAUS”; in this case, the gemination of [t] is morphologically
motivated.

Another phonological phenomenon that concerns us is syllabification. The
English word /morphology/, for example, consists of the syllables (separated by
dots): mor·pho·lo·gy. Open syllables end in a vowel, for example, /lo/, while closed
syllables end in a consonant, for example, /mor/. The components of a syllable can
be represented by a smaller unit, the mora, for example, /lo/ consists of one mora
while /mor/ consists of two morae; syllabic weight is defined by the number of
morae in a syllable: light syllables contain one mora, while heavy syllables contain
two morae.

One also rarely speaks of morphology without reference to syntax. It is not un-
common for an orthographic word in one language to represent a sentence in an-
other. For example, Syriac /baytå/ “the house,” /bbaytå/ “in the house,” /dabbaytå/
“he who is in the house,” /ldabbaytå/ “to him who is in the house,” /waldabbaytå/
“and to him who is in the house” (Robinson, 1978). Syntax (apart from what is

2 Syriac does not allow unstressed short vowels in open syllables, apart from few diachronic cases,
for which see p. 115.

3 Arabic is devoid of initial consonantal clusters.
4 The Arabic causative is derived by the gemination of the second consonant.

6 Introduction

required by morphotactics) is beyond the scope of this work. It suffices to note
that for many languages, such as Semitic, the analysis of the orthographic word
ventures into the realm of morphosyntax. In practical computational systems, a
morphology module must account for phonology and – to some extent – syntax.

1.1.2 Regular Languages

Formal language theory establishes a hierarchy of formal languages based on their
complexity and expressiveness. The class of regular languages is the most basic
in the hierarchy.

Formal languages are defined in terms of strings, strings in terms of alphabets,
and alphabets in terms of sets. These terms are introduced below.

1.1.2.1 Sets

A set is a collection of objects without repetition. A set can be specified by listing
its objects. The following set represents the days of the week:

{ Monday, Tuesday, Wednesday, Thursday, Saturday, Sunday, Friday }
Each object in the set is called an element of the set. Elements are separated by

a comma and are placed in braces, { }. No two elements can be the same; however,
the order of the elements is not important. For instance, in the above set, Friday
appears after Sunday. When the elements in the set are too long to list, one can use
a defining property instead. The above set can be rewritten as follows:

{ x | x is a weekday }
Read: x where x is a weekday.

If an element x is a member of a set A, we say x ∈ A (read: x in A). If an
element x is not a member of a set A, we say x 6∈ A (read: x not in A). For
example, given the set A = { 1, 2, 5 }, we say 2 ∈ A, but 3 6∈ A.

The set containing no elements, usually denoted by { } or ∅, is called the empty
set.

A set A is a subset of another set B, designated by A ⊂ B, if every element in
A is an element in B. For example, { 1,2 } is a subset of { 1,2,3,4 }; however, { 1,5 }
is not a subset of { 1,2,3,4 } because the latter does not include the element 5. If A
is a subset of B but may also be equal to B, we say A ⊆ B.

There are several operations that can be applied to sets: The union of sets A and
B, denoted by A ∪ B, is the set that consists of all the elements in either A or B.
For example, let A = { 1, 2, 3 } and B = { 3, 4, 5 }, then A ∪ B = { 1, 2, 3, 4, 5 }.
Note that since a set cannot have duplicates, the union contains only one instance
of the element 3. We write

n⋃
i=1

Ai

to denote A1 ∪ A2 ∪ · · · ∪ An .

1.1 Linguistic Preliminaries 7

The intersection of sets A and B, denoted by A ∩ B, is the set that consists
of all the common elements in A and B. For example, let A = { 1, 2, 3 } and
B = { 3, 4, 5 }; then A ∩ B = { 3 }. We write

n⋂
i=1

Ai

to denote A1 ∩ A2 ∩ · · · ∩ An .
The difference of sets A and B, denoted by A − B, is the set that consists of all the

elements in A that are not in B. For example, let A = { 1, 2, 3 } and B = { 3, 4, 5 };
then A − B = { 1, 2 }.

The complement of a set A, denoted by A, is the set that consists of all the
elements in the universe that are not in A. The universe set contains all elements
under consideration. If we assume that the universe set contains all the days of the
week and

A = { Monday, Wednesday, Friday }
then

A = { Tuesday, Thursday, Saturday, Sunday }
The cross product of sets A and B, denoted by A × B, is a set consisting of

all the pairs (a1, a2) where the first element, a1, is in A1 and the second ele-
ment, a2, is in A2. For example, let A = { 1, 2 } and B = { 3, 4, 5 }; then A × B =
{ (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5) }. We write

n∏
i=1

Ai

to denote A1 × A2 × · · · × An . We also write Bn to denote the cross product of B
by itself n times; that is, B × B × · · · × B︸ ︷︷ ︸

n times

.

With the use of defining properties, the above operations can be defined as
follows:

A ∪ B = { x | x ∈ A or x ∈ B }
A ∩ B = { x | x ∈ A and x ∈ B }
A − B = { x | x ∈ A but x 6∈ B }

A = { x | x 6∈ A }
A × B = { (a1, a2) | a1 ∈ A1, a2 ∈ A2 }

A finite set contains a finite number of elements. For instance, the set
{ n | 1 ≤ n ≤ 10 } is a finite set of 10 elements, that is, the integers 1 to 10. An
infinite set contains an infinite number of elements. For example, { n | 1 ≤ n }
represents all positive integers, from 1 to infinity.

8 Introduction

Any subset of the cross product A1 × A2 is called a binary relation. A1 is called
the domain of the relation and A2 is called the range of the relation. It is possible
to have a relation on one set, for example, a relation on A × A.

1.1.2.2 Alphabets and Strings

An alphabet is a finite set of symbols. Symbols are usually letters or characters.
The English alphabet is the set

{ A,B, . . . , Y,Z,a,b, . . . , y,z }
A string over some alphabet is a finite sequence of elements drawn from that

alphabet. If A = {a,b,c} is an alphabet, then the following sequences, inter alia,
are strings over A: “a,” “aa,” “aab,” “aac,” “caa,” and “cbbba.” However, the string
“aad” is not a string over A since the element ‘d’ is not in A. (Strings are shown in
double quotes when they appear in text; characters or symbols are shown in single
quotes.)

The number of elements in a string x determines the length of the string, denoted
by |x |. The length of the string “ab” is two and the length of “cbba” is four. A
string of length zero is called the empty string and is denoted by ε.

The terms prefix and suffix apply to strings as they apply to natural languages
(see p. 2).

The concatenation of two strings x and y, denoted by xy, is the string formed
by appending y to x . For example, if x is “may” and y is “be,” then xy is “maybe.”

Concatenation is used to define exponentiation. If x is a string, we write x2 to
denote the concatenation of x with itself twice, that is, xx . Similarly, x3 denotes
the concatenation of x with itself thrice, that is, xxx . In this vein, x1 = x and x0

is the empty string ε. For example, let x be the string “ha;” we say x0 is ε, x1 is
“ha,” x2 is “haha,” x3 is “hahaha,” and so on.

The Kleene star, denoted by x∗, denotes zero or more concatenations of x
with itself: ε, x, xx, xxx , and so on. To exclude the empty string, we use the
Kleene plus notation, x+, which denotes one or more concatenations of x with
itself.

1.1.2.3 Languages, Expressions, and Grammars

The term language, or formal language, denotes any set of strings over some
alphabet. For example, let A = { a,b,c } be some alphabet. All of the following sets
of strings are languages over A:

L1 = { b,ab,aab,aaab,aaaab, . . . }
L2 = { b }
L3 = { abcc,abca,aaba,ccca,caba, . . . }

1.1 Linguistic Preliminaries 9

L1 is an infinite language over A where each string consists of zero or more
instances of ‘a’ followed by one instance of ‘b’. L2 is a finite language over A, and
it consists of only one string, the string being a symbol from the alphabet. L3 is a
finite language over A whose strings are of length four. The language { abc, add },
however, is not a language over A since “add” is not a string over A; this is so
because ‘d’ is not in A.

Expressions are used to describe the strings of a language. The strings in L1,
for example, can be expressed by the expression a∗b: zero or more instances of
‘a’ followed by one ‘b’. The language L2 can be expressed by the expression b
since it contains only that element. Expression may contain other operators such
as disjunction, | (read ‘or’). For instance, the strings in L3 begin with either an ‘a’
or a ‘c’, followed by three arbitrary symbols from A; this can be described by the
expression (a | c)A3.

Given two alphabets, one can use expressions to describe languages over the
two alphabets. Consider the following two alphabets, which represent capital and
small letters, respectively:

C = { A,B, . . . , Y,Z }
S = { a,b, . . . , y,z }

The language C S∗ consists of all strings that start with one capital letter followed
by zero or more small letters, e.g. “I,” “Good,” “Bed.” The language

(C | S)S3 ing

consists of all strings that start with either a capital or small letter, followed by
three small letters, followed by “ing,” for example, “booking,” and “Writing.”

Languages are described by grammars. A formal grammar consists of an alpha-
bet and a set of rewrite rules. Generally, a rewrite rule consists of a left-hand-side
and a right-hand side separated by an arrow, for example,

y → i e

Read: ‘y’ rewrites as ‘i’ followed by ‘e’. Applying the rule on the string “entrys,”
which consists of the stem {entry} concatenated with the plural morpheme {s},
results in “entries,” after replacing ‘y’ by “ie.” This is the rule that applies to
English plurals ending in a ‘y.’ However, there is nothing preventing the rule from
applying to any ‘y.’ Applying the rule on “may” results in the undesired “maie.”

To restrict the application of rules, one specifies left and right contexts, separated
by an environment bar . The rule only applies when the contexts are satisfied.
The above rule can be rewritten as

y → i e / s

Read: ‘y’ rewrites as ‘i’ followed by ‘e’ before ‘s.’ Here, the left context is not
specified. (The slash, /, separates the contexts from the right-hand side.) The above

10 Introduction

Fig. 1.3. A set of rewrite rules that generate the sentences the old man and the
old woman. Nonterminal symbols start with a capital letters.

rule only applies when there is an ‘s’ to the right of ‘y;’ hence, it does not apply
to “may.”

So far, terminal symbols were used in rules; that is, symbols drawn from the
alphabet in question. It is also possible to use nonterminal symbols; that is, symbols
that are derived from other symbols. These are designated with capital letters.
Consider the following alphabet whose symbols are actual words, {man, old, the,
very, woman}, and the rules in Fig. 1.3. The first rule states that a sentence S rewrites
as the word “the” followed by A. According to the second rule, the symbol A in
turn, rewrites as the word “old” followed by B. Now B rewrites as either “man”
or “woman” according to the third and fourth rules, respectively. This grammar
generates the two sentences: “the old man” and “the old woman”. The derivations
can be illustrated graphically by parse trees as in Fig. 1.4.

Grammars, and hence languages derived from them, are of various complexities.
The least complex are regular languages. These can be generated by rewrite rules
of the form

A → a B

or

A → a

Here A and B are nonterminal symbols and a is a terminal symbol. The formal
definition of regular languages over an alphabet 6 is as follows:

(i) The empty set is a regular language.
(ii) For each a in 6, { a } is a regular language.

Fig. 1.4. Parse trees for the sentences generated by the rules in Fig. 1.3.

1.1 Linguistic Preliminaries 11

(iii) If L1, L2, and L are regular languages, then so are

L1L2 = { xy | x ∈ L1, y ∈ L2 } (concatenation)
L1 ∪ L2 = { x | x ∈ L1 or x ∈ L2 } (union)
L∗ = ⋃∞

i=0 Li (Kleene star)

(iv) There are no other regular languages.

Every regular language is described by a regular expression. A regular expres-
sion over some alphabet is an expression consisting of a sequence of symbols
from the alphabet constructed by means of concatenation, union, or Kleene star.
For example, let { a,b,c } be an alphabet; then “ab” (concatenation), a ∪ b (union),
and a∗ (Kleene star) are regular expressions. More formally, a regular expression
over an alphabet 6 is defined as follows:

(i) ∅ is a regular expression and denotes the empty set.
(ii) ε is a regular expression and denotes the set { ε }.

(iii) For each a in 6, a is a regular expression and denotes the set { a }.
(iv) If r1, r2, and r are regular expressions denoting the languages R1, R2, and

R, respectively, then so are
r1r2, denoting R1 R2 (concatenation)
r1 | r2, denoting R1 ∪ R2 (union)
r∗, denoting R∗ (Kleene star)

(v) There are no other regular expressions.

Some languages cannot be expressed by regular grammars. Let ‘a’ and ‘b’ be
two symbols in an alphabet. It is possible to express a language that contains a
specified number of ‘a’s followed by the same number of ‘b’s, say a3b3, which
denotes the language { aaabbb }. However, it is not possible to express a language
that contains an unspecified number of ‘a’s followed by the same number of ‘b’s
such as the expression anbn , that is, n ‘a’s followed by n ‘b’s.

1.1.3 Context-Free Languages

A more expressive class of languages is the context-free family of languages,
which can cope with anbn languages. Context-free languages are generated by
context-free grammars.

1.1.3.1 Context-Free Grammars

Context-free languages are generated by rewrite rules called context-free rules.
These may not contain left or right contexts as their name implies. However,
unlike regular grammars, context-free rewrite rules may contain any number of
nonterminals on the right-hand side of rules.

Consider the rules in Fig. 1.5, which generates the sentences “the book,” “the
books,” “a book,” and “some books.” Figure 1.6 gives the parse trees of the gen-
erated sentences.

12 Introduction

Fig. 1.5. A context-free grammar. Nonterminals start with a capital letter.

The first four rules in Fig. 1.5 actually describe one linguistic phenomenon: a
noun phrase (NP) rewrites as a determiner (Det) followed by a noun. The duplica-
tion in rules (with the prefixes ‘Sing’ and ‘Pl’ to indicate singular and plural, respec-
tively) are necessary in order to ensure that the determiner and noun agree in num-
ber. Unification provides a mechanism by which such duplications can be avoided.

1.1.3.2 Unification

A feature represents a characteristic. For example, NUMBER is a feature of nouns.
Similarly, PERSON is a feature of verbs. Typically, a feature has a value. The feature
NUMBER, for example, takes the values sing and pl for singular and plural, respec-
tively. (Features are shown in SMALL CAPS, while values are shown in small type.)

A matrix of features constitutes a category, for example,[
NUMBER = sing
PERSON = 2nd
GENDER = masc

]

Unification is an operation that combines two categories into one as long as the
two initial categories do not contain conflicting information. The resulting category

Fig. 1.6. Parse trees for the sentences generated by the rules in Fig. 1.5.

1.1 Linguistic Preliminaries 13

contains all the information in the two initial categories. As a way of illustration,
let

A =
[

NUMBER = sing
PERSON = 2nd

]
, B =

[
PERSON = 2nd
GENDER = masc

]

The unification of A and B produces a new category C ,

C =
[

NUMBER = sing
PERSON = 2nd
GENDER = masc

]

which combines all the information in A and B. Boxed indices, e.g. 1 , 2 , and so
on, are used to avoid writing the same value again and again in different categories.
For example, A and B above can be rewritten as

A =
[

NUMBER = sing
PERSON = 2nd 1

]
, B =

[
PERSON = 1
GENDER = masc

]

If the value of PERSON is unknown, but both A and B must have the same value,
then the following can be written

A =
[

NUMBER = sing
PERSON = 1

]
, B =

[
PERSON = 1
GENDER = masc

]

Now let

D =
[

NUMBER = sing
PERSON = 2nd

]
, E =

[
PERSON = 1st
GENDER = masc

]

The unification of D and E fails since they contain contradicting information, that
is, the value of the feature PERSON.

Unification is more powerful than the above examples show. The value of a
feature may be a variable. Let

F =
[

NUMBER = sing
PERSON = X

]
, G =

[
PERSON = 1st
GENDER = Y

]

where X and Y are variables. The unification of F and G produces the following
new category H ,

H =
[

NUMBER = sing
PERSON = 1st
GENDER = Y

]

where the value of PERSON was instantiated from G. The value of GENDER, however,
remains uninstantiated.

14 Introduction

When a feature can possibly take more than one value, set notation is used, for
example,

I =
[

NUMBER = { sing,plural }
PERSON = 1st
GENDER = Y

]

Unification allows the passing of information from one category to another. It
is used in grammars, which gives rise to the term “unification-based” grammars.

1.1.3.3 Unification-Based Context-Free Grammars

The rules in Fig. 1.5 are repeated in Fig. 1.7, using unification. Here, all nonter-
minals are associated with a category indicating number. All categories present in
a rule must unify. The first rule states that a noun phrase rewrites as a determiner
followed by a noun, both of which must have the same value for NUMBER, that
is, X. Hence, “a book” and “some books” are valid, while *“a books” is invalid.
Since the determiner “the” can take singular and plural nouns, its NUMBER value is

Fig. 1.7. A repetition of the rules in Fig. 1.5, using unification-based context-free
rules. Nonterminals are associated with a category indicating number.

1.2 Computational Preliminaries 15

a variable X. The value is instantiated from noun entries: sing in “the book” and pl
in “the books.”

1.2 Computational Preliminaries

It was mentioned that the claim that the morphology of many languages lies within
the expressiveness of regular languages was adopted by computational morphol-
ogists. The main attraction of regular languages is the ease of modeling them
by the simplest computational devices, known as “finite-state automata.” This
section introduces computational morphology and topics related to finite-state
automata.

1.2.1 Computational Morphology

Computational morphology is a subfield of computational linguistics (also called
“natural language processing” or “language engineering”). Computational mor-
phology concerns itself with computer applications that analyze words in a given
text, such as determining whether a given word is a verb or a noun. Consider, for
example, a spelling checker. To find if a word is spelled correctly, the program
searches a lexicon (a list of the words in that language) for the word in question.
In order for the spelling checker to work, the lexicon must contain all the forms
and inflections of each word (e.g., book, books, booked, booking, etc.), resulting
in a huge lexicon with a few hundred thousand entries. This is even more dramatic
in morphologically rich languages: some of the Arabic spelling checkers have a
lexicon with over 10 million entries!

A more efficient and elegant spelling checker can be achieved by listing in the
lexicon unique stems and morphemes, and having a morphological component
of the program derive words. An Arabic spelling checker that makes heavy use
of morphology should not contain more than 10,000 lexical entries5 to cover
Modern Standard Arabic, of course excluding personal names, foreign loans, and
so on.

Almost all practical applications that deal with natural language must have a
morphological component. After all, an application must first recognize the word
in question before analyzing it syntactically, semantically, or whatever the case
may be.

The typical morphological analyzer tackles three issues: the morphological lexi-
con, rewrite rules, and morphotactic rules. The lexicon encodes all the morphemes
in a given language. Rewrite rules handle orthographic changes, phonological
processes, and the like. Morphotactic rules determine which morphemes can be
combined to form grammatical words.

5 Wehr’s dictionary of Modern Standard Arabic (Wehr, 1971) contains 6167 roots, 3014 of which are
used in the derivation of both verb and noun stems (Daniel Ponsford, personal communication).

16 Introduction

The state-of-the-art methodology in computational morphology for handling
the lexicon and rewrite rules makes use of devices called finite-state automata.
Morphotactic grammars can be described in two ways: either by using finite-state
automata, especially for most purely concatenative languages, or unification-based
context-free grammars for more complex languages. The rest of this section in-
troduces finite-state automata and demonstrates their application in computational
morphology.

1.2.2 Finite-State Automata

A finite-state automaton (FSA) is usually modeled by a program. The program
receives a string from an input tape. It reads one character at a time from left to right.
After reading the last character, it either accepts or rejects the string. An automaton
that accepts English strings would accept the input /receive/ but would reject
*/recieve/. The terms “automaton” and “machine” will be used interchangeably.

A FSA consists of a finite number of states. Before scanning the first character
from the input tape, the machine will be in a special initial state. At any point
while scanning the input, the FSA will be in one particular state, called the current
state. One or more states will be marked as final states. The FSA in Fig. 1.8(a),

Fig. 1.8. A laughing automaton: (a) gives the states of the machine with final
states marked by double circles; (b) adds transitions; (c) is the identity transducer
of the automaton in (b) where each symbol is mapped to itself.

1.2 Computational Preliminaries 17

for example, consists of four states (represented by circles), labeled q0, q1, q2, and
q3. By default we always assume that state q0 is the initial state. Final states are
indicated by double circles (e.g. q3).

The program that represents the FSA consists of a set of instructions of the form
(q0, h, q1), which is interpreted as follows: if the machine is currently in state q0

and the next character to scan from the input tape is ‘h,’ then move to state q1.
Graphically, such an instruction is represented by a transition, an arrow labeled ‘h’
that goes from state q0 to state q1. The FSA in Fig. 1.8(a) is repeated in Fig. 1.8(b)
with the following transitions: (q0, h, q1), (q1, a, q2), (q2, h, q1), (q2, !, q3).

A deterministic finite-state automaton does not have more than one transition
leaving a state on the same label. An ε-free automaton does not contain any
transitions labeled with the empty string ε.

After the last character of the input is scanned, if the automaton is in a final state,
the input is accepted; otherwise, it is rejected. Consider the input string “ha!” and
the automaton in Fig. 1.8(b). After reading the ‘h,’ the automaton moves from state
q0 to q1. After reading the ‘a,’ it moves to state q2. After reading the last character
‘!,’ it moves to state q3. Since there are no more characters in the input string and
the machine is in a final state, the input “ha!” is accepted. In fact, the machine is a
laughing machine, which accepts the strings “ha!,” “haha!,” “hahaha!,” and so on
(after Gazdar and Mellish, 1989). Now consider the input string “ha” (without the
exclamation mark). After reading the first ‘h’ and the ‘a,’ the machine will be in
state q2. There are no more characters in the input string; however, state q2 is not
a final state. Hence, the string “ha” is rejected.

The set of strings that an automaton accepts is the language accepted by that ma-
chine. The language accepted by the above laughing machine is L = {ha!, haha!,
hahaha!, . . .}. Languages that can be described by an FSA belong to the class of
regular languages, as opposed to the more powerful class of context-free languages
(see Sections 1.1.2 and 1.1.3).

The result given by a FSA is limited: either the string is accepted, or it is rejected.
Another form of FSAs is finite-state transducers (FSTs). An FST is a FSA, but
instead of scanning one tape, it scans two tapes simultaneously. One string is
usually designated as input and the other as output. Each transition is labeled with
a pair: the first denotes the character on the first tape, and the second denotes
the character on the second tape. Consider the FST in Fig. 1.9(a). It transduces
(or maps) English laughter into French laughter. If we consider the first tape to be
the input and the second the output, then the machine will transduce English ‘ha!’
into French ‘ah!’ as follows: after reading an ‘h’ on the first tape, it writes an ‘a’
on the second tape and enters state q1. Similarly, reading ‘a’ from the first tape,
it writes ‘h’ on the second tape ending in state q2. Finally, the machines reads ‘!’
from the first tape and writes the same character on the second tape. The transitions
for transducing English “haha!” into French “ahah!” are shown schematically in
Fig. 1.9(b). The numbers between the two tapes indicate the current state after
scanning the input symbol in question.

18 Introduction

Fig. 1.9. An English–French laughing transducer: (a) gives the transition diagram
that maps English laughter into French; (b) shows the transitions for the input
“haha!,” with the numbers between the two tapes indicating the current state after
the input symbol in question is scanned.

The transducer that maps every symbol to itself is called the identity transducer.
For example, the identity of the automaton in Fig. 1.8(b) is the transducer in
Fig. 1.8(c). We denote the identity transducer of a machine A by I d(A).

It was mentioned above (see p. 11) that every regular language is described
by a regular expression. It was also mentioned in this section that languages that
are described by FSAs are regular. The Kleene correspondence theorem shows
the equivalence among regular languages, regular expressions, and finite-state
automata as follows:

(i) Every regular expression describes a regular language.
(ii) Every regular language is described by a regular expression.

(iii) Every finite-state automaton accepts a regular language.
(iv) Every regular language is accepted by a finite-state automaton.

FSAa and FSTs are interesting for a few reasons. First, they are simple to model.
The transitions in Fig. 1.8(b), for example, can be represented by a simple matrix
as shown in Table 1.2.6 Second, transducers are bidirectional. There is nothing
stopping us from using the second tape as input and the first as output. In the
case of the transducer in Fig. 1.9(a), this results in a French–English laughing
transducer. Third, their closure properties (discussed next) allow the combination

6 Representing an automaton with n states using a matrix, however, requires n2 space, regardless of
the number of transitions. A more efficient way would be to store transitions. For an example in
C++, see Budd (1994, Section 16.5); for an example in Prolog, see Kiraz and Grimley-Evans (1997).
Compression methods for large and sparse automata can be found in Aho, Sethi, and Ullman (1986,
p. 144 ff.).

1.2 Computational Preliminaries 19

Table 1.2. Transitions for Fig. 1.9(a)

q0 q1 q2 q3

q0 h:a
q1 a:h
q2 h:a !:!
q3

of various machines using operations such as concatenation, union, and so on to
create more complex machines.

1.2.3 Regular Operations and Closure Properties

One performs operations on automata in the same manner by which one performs
operations on sets, for example; union, intersection, and so on. Since FSAs repre-
sent regular languages and a language is merely a set of strings, one can intuitively
deduce the result of such operations. The union of two automata A and B, for
example, produces an automaton that accepts strings that are accepted by either
A or B.

In addition to the operations mentioned in the formal definition of regular lan-
guages (i.e., concatenation, union, and Kleene star; see p. 10), one can define other
operations that may be applied to FSAs or FSTs. Like the intersection of sets
(see p. 7), the intersection of automata A and B, denoted by A ∩ B, is the auto-
maton that accepts strings that are accepted by both A and B. For example, if
A describes the regular language a | b | c∗ and B describes the regular language
a2 | b | c+, then A ∩ B accepts the language b | c+.

The difference of automata A and B, denoted by A − B, is the automaton that
accepts strings that are accepted by A, but not by B. For example, considering
automata A and B from the previous example, then A − B accepts the language
a | ε (note that c∗ − c+ gives ε).

The complement of an automaton A, denoted by A, is the automaton that accepts
all strings (over some alphabet) apart from those in A. For example, let 6 be an
alphabet and let A be an automaton; then A = 6∗ − A.

Like the cross product of sets (see p. 7), the cross product of automata A and B,
denoted by A × B, is the transducer that maps the strings accepted by A into the
strings that are accepted by B. For example, if A describes the regular language
ab | c and B describes the regular language de | f , then A × B produces the regular
relation (

(ab):(de)
) | ((ab): f

) | (c:(de)
) | (c: f

)
One additional operation we shall encounter is composition, which is confined

to FSTs. When two transducers are composed, the output of the first transducer

20 Introduction

is used as input to the second. For example, if T1 is a transducer that maps a to b,
and T2 is another transducer that maps b to c, then their composition, denoted by
T1 ◦ T2, is the transducer that maps a to c.

A regular language is said to be closed under a specific operation if the applica-
tion of the operation to any regular language results in another regular language.
From the definition of regular languages (see p. 10), we say that regular languages,
and their corresponding FSAs, are closed under concatenation, union, and Kleene
star. This is so because the concatenation of any two regular languages – by defi-
nition – results in a regular language. The same holds for union and Kleene star.

FSAs and ε-free transducers are closed under intersection, difference, and com-
plement. However, ε-containing transducers are not closed under these operations
(Kaplan and Kay, 1994, p. 342). Transducers are closed under composition.

1.2.4 Finite-State Morphology

This section demonstrates how computational morphology makes use of regular
languages, regular expressions, and finite-state automata. A typical morphological
analyser handles lexica, rewrite rules, and morphotactic rules.

1.2.4.1 The Lexica

The morphological lexicon is the set of stems and morphemes in a language.
Being a set of strings, it is usually represented with an automaton (Sproat, 1992,
p. 128 ff.). Figure 1.10(a) gives an automaton for a small English lexicon repre-
senting the words /book/ (with transitions through states q0–q4), /hook/ (with tran-
sitions through the same states but with a different path), /move/ (states q0, q5–q9),
and /model/ (states q0, q5–q12). Final states mark the end of a lexical entry. Note
that entries that share prefixes (in the formal sense), such as “mo” in /move/ and
/model/, share the same transitions for the prefix. Figure 1.10(b) gives another
automaton for the suffixes {ed} and {ing}.

One way to combine the two machines in Fig. 1.10 is by concatenation, yielding
a machine that accepts /booked/, /booking/, /hooked/, /hooking/, and so on. Usually
however, one would want to separate the morphemes by a special boundary symbol,
say β. A two-state machine that accepts this symbol is created and is concatenated
between the two machines in Fig. 1.10, that is, L1βL2. This machine accepts
/bookβed/, /bookβing/, /hookβed/, /hookβing/, and the like.

1.2.4.2 Rewrite Rules

The finite-state approach is the most common method in computational morphol-
ogy and phonology for modeling rewrite rules. Each rule is compiled, by some
algorithm, into a finite-state transducer that performs the mapping desired by the
rule. As a way of illustration, consider the derivation of /moving/ from the lexical

