
1 Prologue: an atomistic view of
electrical resistance

Let me start with a brief explanation since this is not a typical “prologue.” For one it
is too long, indeed as long as the average chapter. The reason for this is that I have
a very broad objective in mind, namely to review all the relevant concepts needed to
understand current flow through a very small object that has only one energy level in
the energy range of interest. Remarkably enough, this can be done without invoking
any significant background in quantum mechanics. What requires serious quantum
mechanics is to understand where the energy levels come from and to describe large
conductors with multiple energy levels. Before we get lost in these details (and we
have the whole book for it!) it is useful to understand the factors that influence the
current–voltage relation of a really small object.

This “bottom-up” view is different from the standard “top-down” approach to elec-
trical resistance. We start in college by learning that the conductance G (inverse of
the resistance) of a large macroscopic conductor is directly proportional to its cross-
sectional area A and inversely proportional to its length L:

G = σ A/L (Ohm’s law)

where the conductivity σ is a material property of the conductor. Years later in graduate
school we learn about the factors that determine the conductivity and if we stick around
long enough we eventually talk about what happens when the conductor is so small that
one cannot define its conductivity. I believe the reason for this “top-down” approach
is historical. Till recently, no one was sure how to describe the conductance of a really
small object, or if it even made sense to talk about the conductance of something really
small. To measure the conductance of anything we need to attach two large contact
pads to it, across which a battery can be connected. No one knew how to attach contact
pads to a small molecule till the late twentieth century, and so no one knew what the
conductance of a really small object was. But now that we are able to do so, the answers
look fairly simple, except for unusual things like the Kondo effect that are seen only for
a special range of parameters. Of course, it is quite likely that many new effects will be
discovered as we experiment more on small conductors and the description presented
here is certainly not intended to be the last word. But I think it should be the “first
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2 Prologue: an atomistic view of electrical resistance
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Fig. 1.1 Sketch of a nanoscale field effect transistor. The insulator should be thick enough to
ensure that no current flows into the gate terminal, but thin enough to ensure that the gate voltage
can control the electron density in the channel.

word” since the traditional top-down approach tends to obscure the simple physics of
very small conductors.

The generic structure I will often use is a simple version of a “nanotransistor” con-
sisting of a semiconducting channel separated by an insulator layer (typically silicon
dioxide) from the metallic gate (Fig. 1.1). The regions marked source and drain are
the two contact pads, which are assumed to be highly conducting. The resistance of
the channel determines the current that flows from the source to the drain when a voltage
VD is applied between them. The voltage VG on the gate is used to control the electron
density in the channel and hence its resistance. Such a voltage-controlled resistor is the
essence of any field effect transistor (FET) although the details differ from one version
to another. The channel length L has been progressively reduced from ∼10 µm in 1960
to ∼0.1 µm in 2000, allowing circuit designers to pack (100)2 = 10 000 times more
transistors (and hence that much more computing power) into a chip of given surface
area. This increase in packing density is at the heart of the computer revolution. How
much longer can the downscaling continue? No one really knows. However, one thing
seems certain. Regardless of what form future electronic devices take, we will have to
learn how to model and describe the electronic properties of device structures that are
engineered on an atomic scale. The examples I will use in this book may or may not be
important twenty years from now. But the problem of current flow touches on some of
the deepest issues of physics related to the nature of “friction” on a microscopic scale
and the emergence of irreversibility from reversible laws. The concepts we will dis-
cuss represent key fundamental concepts of quantum mechanics and non-equilibrium
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3 1.1 Energy level diagram

statistical mechanics that should be relevant to the analysis and design of nanoscale
devices for many years into the future.
Outline: To model the flow of current, the first step is to draw an equilibrium energy
level diagram and locate the electrochemical potential µ (also called the Fermi level or
Fermi energy) set by the source and drain contacts (Section 1.1). Current flows when an
external device such as a battery maintains the two contacts at different electrochemical
potentials µ1 and µ2, driving the channel into a non-equilibrium state (Section 1.2).
The current through a really small device with only one energy level in the range of
interest is easily calculated and, as we might expect, depends on the quality of the
contacts. But what is not obvious (and was not appreciated before the late 1980s) is
that there is a maximum conductance for a channel with one level (in the energy range
of interest), which is a fundamental constant related to the charge on an electron and
Planck’s constant:

G0 ≡ q2/h = 38.7 µS = (25.8 k�)−1 (1.1)

Actually small channels typically have two levels (one for up spin and one for down
spin) at the same energy (“degenerate” levels) making the maximum conductance equal
to 2G0. We can always measure conductances lower than this, if the contacts are bad.
But the point is that there is an upper limit to the conductance that can be achieved
even with the most perfect of contacts (Section 1.3). In Section 1.4, I will explain the
important role played by charging and electrostatics in determining the shape of the
current–voltage (I–V) characteristics, and how this aspect is coupled with the equations
for quantum transport. Once this aspect has been incorporated we have all the basic
physics needed to describe a one-level channel that is coupled “well” to the contacts.
But if the channel is weakly coupled, there is some additional physics that I will discuss
in Section 1.5. Finally, in Section 1.6, I will explain how the one-level description is
extended to larger devices with multiple energy levels, eventually leading to Ohm’s law.
It is this extension to larger devices that requires the advanced concepts of quantum
statistical mechanics that constitute the subject matter of the rest of this book.

1.1 Energy level diagram

Figure 1.1.1 shows the typical current–voltage characteristics for a well-designed tran-
sistor of the type shown in Fig. 1.1 having a width of 1 µm in the y-direction perpendic-
ular to the plane of the paper. At low gate voltages, the transistor is in its off state, and
very little current flows in response to a drain voltage VD. Beyond a certain gate voltage,
called the threshold voltage VT, the transistor is turned on and the ON-current increases
with increasing gate voltage VG. For a fixed gate voltage, the current I increases at first
with drain voltage, but it then tends to level off and saturate at a value referred to as the
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Fig. 1.1.1 (a) Drain current I as a function of the gate voltage VG for different values of the drain
voltage VD. (b) Drain current as a function of the drain voltage for different values of the gate
voltage.

ON-current. Let us start by trying to understand why the current increases when the
gate voltage exceeds VT (Fig. 1.1.1a).

The first step in understanding the operation of any inhomogeneous device structure
(like the generic one shown in Fig. 1.1) is to draw an equilibrium energy level diagram
(sometimes called a “band diagram”) assuming that there is no voltage applied between
the source and the drain. Electrons in a semiconductor occupy a set of energy levels
that form bands as sketched in Fig. 1.1.2. Experimentally, one way to measure the
occupied energy levels is to find the minimum energy of a photon required to knock
an electron out into vacuum (photoemission (PE) experiments). We can describe the
process symbolically as

S + hν → S+ + e−

where “S” stands for the semiconductor device (or any material for that matter!).
The empty levels, of course, cannot be measured the same way since there is no

electron to knock out. We need an inverse photoemission (IPE) experiment where an
incident electron is absorbed with the emission of photons:

S + e− → S−+hν

Other experiments like optical absorption also provide information regarding energy
levels. All these experiments would be equivalent if electrons did not interact with each
other and we could knock one electron around without affecting everything else around
it. But in the real world subtle considerations are needed to relate the measured energies
to those we use and we will discuss some of these issues in Chapter 2.

We will assume that the large contact regions (labeled source and drain in Fig. 1.1)
have a continuous distribution of states. This is true if the contacts are metallic, but not
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5 1.1 Energy level diagram
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Fig. 1.1.2 Allowed energy levels that can be occupied by electrons in the active region of a device
like the channel in Fig. 1.1. A positive gate voltage VG moves the energy levels down while the
electrochemical potential µ is fixed by the source and drain contacts, which are assumed to be in
equilibrium with each other (VD = 0).

exactly true of semiconducting contacts, and interesting effects like a decrease in the
current with an increase in the voltage (sometimes referred to as negative differential
resistance (NDR)) can arise as a result (see Exercise E.1.4); however, we will ignore
this possibility in our discussion. The allowed states are occupied up to some energy
µ (called the electrochemical potential) which too can be located using photoemission
measurements. The work function is defined as the minimum energy of a photon needed
to knock a photoelectron out of the metal and it tells us how far below the vacuum level
µ is located.

Fermi function: If the source and drain regions are coupled to the channel (with
VD held at zero), then electrons will flow in and out of the device bringing them all
in equilibrium with a common electrochemical potential, µ, just as two materials in
equilibrium acquire a common temperature, T. In this equilibrium state, the average
(over time) number of electrons in any energy level is typically not an integer, but is
given by the Fermi function:

f0(E − µ) = 1

1 + exp[(E − µ)/kBT ]
(1.1.1)

Energy levels far below µ are always full so that f0 = 1, while energy levels far
above µ are always empty with f0 = 0. Energy levels within a few kBT of µ are
occasionally empty and occasionally full so that the average number of electrons lies

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521631459 - Quantum Transport: Atom to Transistor
Supriyo Datta
Excerpt
More information

http://www.cambridge.org/0521631459
http://www.cambridge.org
http://www.cambridge.org
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Fig. 1.1.3 The Fermi function (Eq. (1.1.1)) describing the number of electrons occupying a state
with an energy E if it is in equilibrium with a large contact (“reservoir”) having an electrochemical
potential µ.

between 0 and 1: 0 ≤ f0 ≤ 1 (Fig. 1.1.3). Note that this number cannot exceed one
because the exclusion principle forbids more than one electron per level.

n-type operation: A positive gate voltage VG applied to the gate lowers the energy
levels in the channel. However, the energy levels in the source and drain contacts
are unchanged and hence the electrochemical potential µ (which must be the same
everywhere) remains unaffected. As a result the energy levels move with respect to
µ, driving µ into the empty band as shown in Fig. 1.1.2. This makes the channel
more conductive and turns the transistor ON, since, as we will see in the next section,
the current flow under bias depends on the number of energy levels available around
E =µ. The threshold gate voltage VT needed to turn the transistor ON is thus determined
by the energy difference between the equilibrium electrochemical potential µ and the
lowest available empty state (Fig. 1.1.2) or what is called the conduction band edge.

p-type operation: Note that the number of electrons in the channel is not what deter-
mines the current flow. A negative gate voltage (VG < 0), for example, reduces the
number of electrons in the channel. Nevertheless the channel will become more con-
ductive once the electrochemical potential is driven into the filled band as shown in
Fig. 1.1.4, due to the availability of states (filled or otherwise) around E = µ. This
is an example of p-type or “hole” conduction as opposed to the example of n-type or
electron conduction shown in Fig. 1.1.2. The point is that for current flow to occur,
states are needed near E = µ, but they need not be empty states. Filled states are just
as good and it is not possible to tell from this experiment whether conduction is n-type
(Fig. 1.1.2) or p-type (Fig. 1.1.4). This point should become clearer in Section 1.2 when
we discuss why current flows in response to a voltage applied across the source and
drain contacts.
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7 1.2 What makes electrons flow?
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Fig. 1.1.4 Example of p-type or hole conduction. A negative gate voltage (VG < 0) reduces the
number of electrons in the channel. Nevertheless the channel will become more conductive once
the electrochemical potential µ is driven into the filled band since conduction depends on the
availability of states around E = µ and not on the total number of electrons.

Figures 1.1.2 and 1.1.4 suggest that the same device can be operated as an n-type
or a p-type device simply by reversing the polarity of the gate voltage. This is true
for short devices if the contacts have a continuous distribution of states as we have
assumed. But in general this need not be so: for example, long devices can build up
“depletion layers” near the contacts whose shape can be different for n- and p-type
devices.

1.2 What makes electrons flow?

We have stated that conduction depends on the availability of states around E = µ; it
does not matter if they are empty or filled. To understand why, let us consider what
makes electrons flow from the source to the drain. The battery lowers the energy levels
in the drain contact with respect to the source contact (assuming VD to be positive) and
maintains them at distinct electrochemical potentials separated by qVD

µ1 − µ2 = qVD (1.2.1)

giving rise to two different Fermi functions:

f1(E) ≡ 1

1 + exp[(E − µ1)/kBT ]
= f0(E − µ1) (1.2.2a)

f2(E) ≡ 1

1 + exp[(E − µ2)/kBT ]
= f0(E − µ2) (1.2.2b)

Each contact seeks to bring the channel into equilibrium with itself. The source keeps
pumping electrons into it, hoping to establish equilibrium. But equilibrium is never
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8 Prologue: an atomistic view of electrical resistance
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Fig. 1.2.1 A positive voltage Vd applied to the drain with respect to the source lowers the
electrochemical potential at the drain: µ2 = µ1 − qVD. Source and drain contacts now attempt to
impose different Fermi distributions as shown, and the channel goes into a state intermediate
between the two.

achieved as the drain keeps pulling electrons out in its bid to establish equilibrium
with itself. The channel is thus forced into a balancing act between two reservoirs with
different agendas and this sends it into a non-equilibrium state intermediate between
what the source would like to see and what the drain would like to see (Fig. 1.2.1).

Rate equations for a one-level model: This balancing act is easy to see if we con-
sider a simple one-level system, biased such that its energy ε lies between the elec-
trochemical potentials in the two contacts (Fig. 1.2.2). Contact 1 would like to see
f1(ε) electrons, while contact 2 would like to see f2(ε) electrons occupying the state
where f1 and f2 are the source and drain Fermi functions defined in Eq. (1.2.2). The
average number of electrons N at steady state will be something intermediate between
f1(ε) and f2(ε). There is a net flux I1 across the left junction that is proportional to
( f1 − N), dropping the argument ε for clarity:

I1 = q γ1
--h

( f1 − N ) (1.2.3a)

where −q is the charge per electron. Similarly the net flux I2 across the right junction
is proportional to ( f2 − N) and can be written as

I2 = q γ2
--h

( f2 − N ) (1.2.3b)

We can interpret the rate constants γ1/--h and γ2/--h as the rates at which an electron
placed initially in the level ε will escape into the source and drain contacts respec-
tively. In principle, we could experimentally measure these quantities, which have the
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9 1.2 What makes electrons flow?
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Fig. 1.2.2 Flux of electrons into and out of a one-level channel at the source and drain ends:
simple rate equation picture.

dimension per second, so that γ1 and γ 2 have the dimension of energy. At the end of this
section I will say a few more words about the physics behind these equations. But for
the moment, let us work out the consequences.

Current in a one-level model: At steady state there is no net flux into or out of the
channel, I1 + I2 = 0, so that from Eqs. (1.2.3a, b) we obtain the reasonable result

N = γ1 f1 + γ2 f2

γ1 + γ2
(1.2.4)

that is, the occupation N is a weighted average of what contacts 1 and 2 would like to
see. Substituting this result into Eq. (1.2.3a) or (1.2.3b) we obtain an expression for the
steady-state current:

I = I1 = −I2 = q
--h

γ1γ2

γ1 + γ2
[ f1(ε) − f2(ε)] (1.2.5)

This is the current per spin. We should multiply it by two if there are two spin states
with the same energy.

This simple result serves to illustrate certain basic facts about the process of current
flow. Firstly, no current will flow if f1(ε) = f2(ε). A level that is way below both
electrochemical potentials µ1 and µ2 will have f1(ε) = f2(ε) = 1 and will not contribute
to the current, just like a level that is way above both potentials µ1 and µ2 and has
f1(ε) = f2(ε) = 0. It is only when the level lies within a few kBT of the potentials µ1

and µ2 that we have f1(ε) �= f2(ε) and a current flows. Current flow is thus the result of
the “difference in agenda” between the contacts. Contact 1 keeps pumping in electrons
striving to bring the number up from N to f1, while contact 2 keeps pulling them out
striving to bring it down to f2. The net effect is a continuous transfer of electrons from
contact 1 to 2 corresponding to a current I in the external circuit (Fig. 1.2.2). Note that
the current is in a direction opposite to that of the flux of electrons, since electrons have
negative charge.
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10 Prologue: an atomistic view of electrical resistance

It should now be clear why the process of conduction requires the presence of states
around E = µ. It does not matter if the states are empty (n-type, Fig. 1.1.2) or filled
(p-type, Fig. 1.1.4) in equilibrium, before a drain voltage is applied. With empty states,
electrons are first injected by the negative contact and subsequently collected by the
positive contact. With filled states, electrons are first collected by the positive contact
and subsequently refilled by the negative contact. Either way, we have current flowing
in the external circuit in the same direction.

Inflow/outflow: Eqs. (1.2.3a, b) look elementary and I seldom hear anyone question
them. But they hide many subtle issues that could bother more advanced readers and
so I feel obliged to mention these issues briefly. I realize that I run the risk of confusing
“satisfied” readers who may want to skip the rest of this section.

The right-hand sides of Eqs. (1.2.3a, b) can be interpreted as the difference between
the influx and the outflux from the source and drain respectively (see Fig. 1.2.2).
For example, consider the source. The outflux of γ1 N/--h is easy to justify since γ1/--h
represents the rate at which an electron placed initially in the level ε will escape into the
source contact. But the influx γ1 f1/--h is harder to justify since there are many electrons
in many states in the contacts, all seeking to fill up one state inside the channel and it is
not obvious how to sum up the inflow from all these states. A convenient approach is
to use a thermodynamic argument as follows. If the channel were in equilibrium with
the source, there would be no net flux, so that the influx would equal the outflux. But
the outflux under equilibrium conditions would equal γ1 f1/--h since N would equal f1.
Under non-equilibrium conditions, N differs from f1 but the influx remains unchanged
since it depends only on the condition in the contacts which remains unchanged (note
that the outflux does change giving a net current that we have calculated above).

“Pauli blocking”? Advanced readers may disagree with the statement I just made,
namely that the influx “depends only on the condition in the contacts.” Shouldn’t the
influx be reduced by the presence of electrons in the channel due to the exclusion
principle (“Pauli blocking”)? Specifically one could argue that the inflow and outflow
(at the source contact) be identified respectively as

γ1 f1(1 − N ) and γ1 N (1 − f1)

instead of

γ1 f1 and γ1 N

as we have indicated in Fig. 1.2.2. It is easy to see that the net current given by the
difference between inflow and outflow is the same in either case, so that the argu-
ment might appear “academic.” What is not academic, however, is the level broaden-
ing that accompanies the process of coupling to the contacts, something we need to
include in order to get quantitatively correct results (as we will see in the next section).
I have chosen to define inflow and outflow in such a way that the outflow per electron
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