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1
Development of forest and landscape modeling

approaches
David J. Mladenoff and William L. Baker

Ecological basis of forest models

The forest landscape models encompassed by this book derive from several sources.
Most largely descend from ecological models developed over approximately the
past 30 years. They owe their conceptual basis to developments in concepts and
theories of ecological succession, disturbance, and equilibrium and non-
equilibrium ecological systems, including populations, communities, ecosystems,
and landscapes. Clearly, these conceptual roots extend further back within ecology
than the briefer, 30-year period of computer modeling. Most of the approaches
presented here combine aspects of all of the above. Some of the models in this
volume (most notably Sessions et al., Chapter 9) also derive more broadly from
the field of geographic information systems (GIS) and forest planning, manage-
ment, and decision-making software.

The modeling approaches here also are generally both empirical and mechan-
istic, and many have practical application in analyzing change and management on
real landscapes. Development and use of these forest landscape models liberally
cross the lines of fundamental and applied research. The impetus for many of these
modeling approaches clearly originates within the needs of resource management,
and the growing interest in managing larger landscapes. Meeting these management
needs often requires tools that can help assess the effects of different management
scenarios. These scenarios often require decision-making horizons spanning broad
temporal and spatial scales. Often, simulation models are the only way to assess
alternatives that cannot be tested under such real-world conditions.

The models in this book also can be considered to lie within an area of ecology
itself, namely landscape ecology. Landscape ecology, particularly in North Amer-
ica, derives its theoretical development most strongly from ecosystem and com-
munity ecology of the last four decades, and its applied aspects from environmental
management (Golley, 1993). Spatial processes and interactions, large land areas,
and heterogeneity are explicit added focuses of landscape ecology (Pickett and


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Cadenasso, 1995; Turner, 1989). Both ecology and environmental or ecosystem
management can trace their own growth to a common origin in the social and
environmental climate of the 1960s, with the growth of publicly funded research
and environmental concern and regulation (McIntosh, 1985).

Several concepts in ecology are, in particular, fundamental for the approaches
described in this book. These are concepts of vegetation change based on disturb-
ance and succession, and the non-equilibrium nature of vegetation and ecosystems,
e.g., contributions and literature reviewed in Pickett and White (1985). Another
important concept is that of scale, and especially the view of the importance of
spatially explicit dynamics, operating at varied spatial and temporal scales, in
vegetation change (Levin and Paine, 1974; Grubb, 1977; Loucks et al., 1985).
These concepts, along with advances in technical tools such as the computational
capability and low cost of new computers, GIS software, and remote sensing,
provide the foundation for the spatial modeling approaches presented here.

Theory and concepts of succession, disturbance, and equilibrium

There have been many excellent reviews of the development of successional theory
and concepts and this development will not be described in detail again here
(Connell and Slatyer, 1977; Drury and Nisbet, 1973; West et al., 1981; McIntosh,
1985; Glenn-Lewin et al., 1992). However, a synopsis of historical context and
development of vegetation change concepts in ecology will be provided. These
concepts are ultimately embedded in the modeling approaches described in this
book. Also, a general genealogy of forest models that lead to the models presented
later will be outlined.

Systematic study of succession developed in the 1890s and early 1900s, especially
with the work of Cowles (1899, 1911) and Cooper (1926). Detailed theory and
description of mechanisms were comprehensively developed by Clements (1916).
Clements was instrumental in articulating concepts and mechanisms of succession
as an orderly, deterministic progression from beginning points of vegetation com-
position to a climatically determined climax, that represented a stable equilibrium
(Clements, 1916). Most importantly, the plant community was seen as responding
as a single organism itself through time, and the inevitable climax, once reached,
exhibited long-term stability. The intuitive appeal and heuristic usefulness of such
a theory is in its order and predictability – features of great utility in developing a
predictive science of ecology, and ultimately, useful predictive models. There is
some risk in portraying a caricature, or in over-simplifying, the rich and detailed
work of Clements. Nonetheless, it is this simplified view that became dogma with
ecology (McIntosh, 1985).

Alternative models were developed early as well, by Gleason (1926) in the US,
Ramensky in Russia (1924; cited in McIntosh, 1985), and Tansley in England
(1935). Gleason especially criticized Clements and showed that succession had a
much larger stochastic component, and that species respond individualistically to
the environment. Species composition is due in part to chance events resulting in
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an assemblage of species with similar environmental responses, but not due to
deterministic change of the community as a whole (Gleason, 1927). Nevertheless,
the intuitive appeal of the Clementsian approach largely prevailed in ecology until
after the 1940s. In the 1950s more extensive, quantitative approaches validated
Gleason’s view, in locations of both steep environmental gradients (Great Smoky
Mountains: Whittaker, 1956) and moderate gradients (Wisconsin: Curtis and
McIntosh, 1951; Curtis, 1959).

Even after the 1950s, the Clementsian view persisted, particularly within the
developing field of systems ecology (Odum, 1969, 1971; Margalef, 1963). For
several decades a notable rift existed in ecology exemplified on the one hand by
the Clementsian-derived approach of systems ecology and, on the other hand, by
the Gleasonian-based community and population – evolutionary approach
(McIntosh, 1980; Peet and Christensen, 1980). More recent approaches have
recognized a more integrated view of succession, and include plant demographics
(Huston and Smith, 1987; Glenn-Lewin et al., 1992).

Somewhat more slowly to develop than succession theory itself was the other half
of the vegetation change equation – the importance of disturbance. This develop-
ment required evolution in the concepts of succession and climax, and the implied
stable equilibrium state of the climax, that had left little role for the perceived, rare
disturbance events. Non-equilibrium notions of vegetation actually were articulated
relatively early, and recognized the importance of observational scale, but were even
more slowly accepted than were challenges to the Clementsian succession paradigm
(Watt, 1947; Whittaker, 1953). More recent concepts of disturbance explicitly
recognize the importance of stochasticity and variability in disturbance severity, spa-
tial and temporal scale, and the integration of changing ecosystem processes, such
as resource availability, with individual species responses to disturbance (Pickett and
White, 1985). The recognition that these processes operate at varied spatial and tem-
poral scales, that succession and disturbances can recur in ecological systems, and that
these interactions have consequences for varied trajectories of vegetation change, set
the stage for modeling forest landscapes in realistic ways.

Conceptual models of forest change

Several approaches developed to apply these changing successional concepts to
predictive models, albeit non-spatial, during the 1970s. Those most developed
were two related approaches, Markov transition models and vital-attribute models.
These approaches exemplify more formal mathematical and rule-based formula-
tions of succession theory, are useful heuristically, and began application of succes-
sion theory to studies of ecological change and management.

Stationary Markov models (Feller, 1968) have been used to characterize succes-
sional changes over time based on observed transitions in forests (Stephens and
Waggoner, 1970; Waggoner and Stephens, 1970). Markov models are a mathemat-
ical approach utilizing a matrix of empirically determined transition probabilities
to predict tree-species replacement and, therefore, composition over time. Short-
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comings of this approach have been described many times, and include the prob-
lems that (i) successional change may not be stationary, i.e., the probabilities may
not be constant over time; (ii) they are typically first-order models, meaning that
only the current state is considered in determining the transition; and (iii) they are
non-spatial, in that adjacency relationships are not considered in the transition
probabilities (van Hulst, 1979; Binkley, 1980). Modifications of this approach exist,
described as semi-Markov models, that address some of the above problems
(Ginsberg, 1971).

Computer models of forest change

During the 1970s several approaches to converting succession theory and know-
ledge of forest stand dynamics appeared that we see as antecedents to many of the
modeling methods in this book. These models were formulated at individual-tree,
forest gap, and stand scales.

Relatively simple rule-based transition models, related to Markov models, were
developed in Australia (Noble and Slatyer, 1980) and in the western US (Cattelino et

al., 1979). These transition models have greater flexibility than the simple Markov
models, and began to incorporate various pathways due to disturbance and site char-
acteristics, rather than converging to a single steady state. State changes were based
on combinations of species life history characteristics or ‘vital attributes’ (Cattelino et

al., 1979) which respond to disturbances. The models proved to be ecologically
useful, and were applied within the FORPLAN forest planning system of the US
Forest Service (Potter et al., 1979). These were some of the first models to be imple-
mented on computers and used extensively in forest management for large areas, such
as a National Forest, although, again, they were not explicitly spatial.

One of the most interesting and detailed of the early forest models was the
FOREST model of Ek and Monserud (1974), developed for northern Wisconsin,
USA. The model simulated reproduction, growth, and mortality of all trees in a
forest stand. Each tree was spatially located, and adjacent effects of crown shading
and seed dispersal were included. The model challenged the computational capabil-
ities of computers at the time, included great detail, and also had extensive input
parameter requirements. In many ways the FOREST model was a conceptually
and mechanistically superior approach, especially for the 1970s. But the computa-
tional requirements and input needs limited its use.

Slightly earlier, Botkin et al. (1972) developed JABOWA, the first of the forest
gap simulators, for forests of the Northeastern US. This model and its many des-
cendants incorporated the ecological realism of simulating detailed succession at
the forest gap level. The JABOWA model of Botkin et al. spawned numerous
modifications and model versions, particularly by Shugart and colleagues (Shugart,
1984, 1998). Gap models have been adapted worldwide, and have made important
contributions to understanding forest-stand dynamics in nearly every type of forest
ecosystem. Useful reviews of these implementations and the gap model evolution
are also numerous (Shugart, 1984, Urban and Shugart, 1992).
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Applications of gap models are often assumed to portray change at the single-tree
gap scale, and results interpreted accordingly. However, this was not typically the
scale at which most versions operated. The original JABOWA model simulated a
0.01 ha (10 m × 10 m), tree-size plot. The FOREST model and its descendants
simulate a plot size significantly larger than this, typically 0.08–0.1 ha (Shugart,
1984). The computational problems inherent in the FOREST model were some-
what avoided in this conceptualization. An entire forest stand simulation could be
approximated, assuming homogeneity, by averaging multiple single plot runs. Later
versions of the gap model added detail by a return to the single-tree scale, and
with spatial implementations, simulating a network of plots in a stand-sized grid
of 4–9 ha (Smith and Urban, 1988; Sarkar et al., 1996). Since the original gap
models were single-plot, and non-spatial, they typically did not include disturb-
ances such as fire (but see Kercher and Axelrod, 1984). Gap models have been
usefully applied to many problems since early in their development, including
management (Aber et al., 1982) and climate change (Solomon, 1986; Pastor and
Post, 1988; Shugart, 1998).

Most models at this time were addressing within-stand change. A few
approaches attempted to directly address larger-scale, landscape or regional forest
change, and stand out for the early period of their development, as the FOREST
model does at the stand level. Models were developed for regions of the US under
the US IBP Program (Loucks et al., 1981). A differential equation model that
simulated regional forest change across the North central US Lake States was
developed by Shugart et al. (1973). The model was non-spatial, and did not include
disturbance. Change was similar to the Markov tree models described above, but
in this case transitions were between major forest cover classes. The third model,
for the Georgia Piedmont, is particularly interesting in that it included land-use
cover-classes as well as natural forest changes (Johnson and Sharpe, 1976). This
model was not only a deterministic successional model, but included possible
alterations on the landscape by logging, fire, and grazing. The model output
described percentage changes in the cover classes for the region under different
change rates for the disturbance parameters (Johnson and Sharpe, 1976).

Recently, Pacala et al. (1993) have developed a spatially explicit, stand-level
model (SORTIE) based on new and more detailed field data and calibrations of
seed dispersal, recruitment, growth, and mortality. In this approach, individual
trees are each located in a stand. In this respect and in its greater data requirements,
it owes much to the approach in the FOREST model developed by Ek and Mon-
serud (1974). In its mechanisms and array of submodels, SORTIE derives its struc-
ture from the JABOWA-FORET gap models (Pacala et al., 1993). The advantages
of SORTIE are that it incorporates stronger field data-derived relationships in its
submodels than did the previous gap models. Its disadvantages are that, like
FOREST in the past, simulating large areas with a spatially explicit, single-tree
model has great computational cost. Typically, stands of <10 ha can be simulated
with reasonable processing time (Pacala et al., 1993). The model also has its power
built on the need for extensive new data collection for input parameter calibration,
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data not yet available for most locations outside of its original development locale
of southern New England.

Forestry growth and yield models

Forestry models under this group differ in their purposes and derivation from the
more ecological models described above. The development of this field has been
reviewed several times (Munro, 1974; Loucks et al., 1981; Dale et al., 1985; Parks
and Alig, 1988). These models derived from forest growth and yield data and
predictive equations at first concerned with predicting aggregate stand growth
increment for potential harvest, such as STEMS (Belcher et al., 1982). Later indi-
vidual-tree simulation models bridged this field with the ecological models. The
FOREST model is within this overlapping group and is appropriately described
above as well.

Forest management and planning models

Models under this general area actually begin to separate from the more biologically
based succession and forest growth models, and overlap with more general man-
agement planning, land-use planning, and decision-support software systems.
There has often been a close link between the growth and yield models and these
planning models (Iverson and Alston, 1986). Some distinction of scale can be made,
differentiating larger scale, strategic planning or regional timber-supply models, and
smaller scale, growth and yield and tactical decision models. One of the best known
models is the FORPLAN model of the US Forest Service (Iverson and Alston,
1986). Models of this type are often complex, and have been criticized for past
versions that lacked ecological dynamics and variability, or spatial considerations,
which were then not included in resulting projections and plans (Johnson, 1992).
This is a complex and growing area, and despite shortcomings, has been important
in extending the development and use of computers models for large-scale plan-
ning, and assessing management consequences on large forest ownerships.

These models that developed within the forest management field also tended to
diverge from other forest models after the 1970s, similar to the split between the
forestry and ecological models. Within this management and planning field, GIS
applications developed that were more decision-making software than models in a
strict sense, and they were not ecological. These applications did not typically
consider, for example, natural disturbance rates or variability, or spatial interactions
in their planning algorithms (Johnson and Scheurman, 1977; Hoganson and Burke,
1997).

Disturbance models

The final group of models that form part of the basis for the models in this book
are disturbance models. Much of the information and initial modeling efforts
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within this group were empirically based fire spread models, developed to under-
stand fire behavior for suppression purposes (Van Wagner, 1969; Rothermel, 1972;
Gardner et al., Chapter 7). This information was later extended to forest manage-
ment models (Kessell, 1976). Subsequent ecological research on forest disturbance,
including fire (Heinselman, 1973, 1981; Van Wagner, 1978; Johnson, 1992) and
later windthrow (Canham and Loucks, 1984; Runkle, 1982; Frelich and Lorimer,
1991), also laid important groundwork for later integration into ecological models.

Development of landscape modeling approaches

The spatial landscape models in this book have some of their roots in the forest
ecology and modeling discussed in the last two sections, but technological develop-
ments in the 1980s shifted both these areas of research toward spatial phenomena
and large land areas. Landscape ecology, the study of ecological phenomena on
large land areas (the scale of kilometers), has roots much earlier in the twentieth
century, but bloomed in the 1980s. While satellite imagery and geographical
information systems (GIS) were available earlier, Landsat Thematic Mapper (TM)
data at 30-m resolution and small workstations with GIS software made spatial
analyses of large land areas more feasible in the 1980s.

When models of landscape change were reviewed in the late-1980s (Baker,
1989), there were relatively few examples of spatial models, in part because the
impacts of this technological revolution were just unfolding. In the middle of the
1980s, common models of landscape change were dominated by distributional
approaches. Distributional landscape models focus on ‘‘. . . the distribution of land
area among classes of landscape phenomena . . .’’ (Baker, 1989 p.113); an example
is Shugart et al.’s (1973) model of succession among 15 forest types in the western
Great Lakes, based on forest cover data. While the Shugart et al. model used
differential equations, also popular were difference-equation (matrix) models using
Markov, semi-Markov, and projection approaches; an example is the Rejmanek et

al. (1987) model of vegetation dynamics in the Mississippi delta region.
However, in the middle 1980s, there were several threads of development lead-

ing to spatially explicit landscape models. In spatially explicit models, the behavior
of an individual cell or pixel cannot be predicted without knowing its location
relative to other cells. The earliest spatially explicit landscape model may be the
gradient fire model of Kessell (e.g., 1979), which uses spatially estimated vegetation
and fuels data to simulate spatial fire patterns and post-fire succession. The Kessell
model was deeply rooted in forest ecology and management traditions, building
on gradient analysis and incorporating existing disturbance models discussed in the
last section.

In addition to the Kessell model, in the last half of the 1980s spatially explicit
models of shifting cultivation and secondary forest succession (Wilkie and Finn,
1988), and coastal marshland changes (Browder et al., 1985; Sklar et al., 1985)
appeared. These models were less rooted in the forest ecology and modeling literat-
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ure, but instead began to apply emerging landscape ecology ideas in a spatial
modeling framework.

Another thread of development was from mathematical and physical theory
about properties of arrays of cells. One aspect of this thread is cellular automata
models, whose roots are in information theory of the 1960s. A cellular automaton
in its simplest form is a grid-cell model where complex dynamics arise from simple
neighborhood interaction rules (Wolfram, 1984). A neighborhood-based transition
model of landscape changes in Georgia appeared in the late 1980s (Turner, 1988).
A second aspect of this thread is percolation modeling, derived from fractal theory
and spatial properties of arrays. In the late 1980s percolation models were used to
analyze the spread of disturbances across a landscape (Turner et al., 1989).

Over the last decade these threads of development from forest ecology, disturb-
ance ecology, landscape ecology, and the mathematics of cellular automata and
percolation arrays have interacted to lead us to the present state of spatial modeling,
demonstrated in this book. Models emphasizing forest ecology and modeling of
small land areas, such as gap models, are now reaching development in a spatially
explicit form on large land areas, represented by the ZELIG version FACET
(Urban et al., Chapter 4). Models that have roots in the cellular automata frame-
work, such as METAFOR (Urban et al., Chapter 4) and DISPATCH (Baker,
Chapter 11) continue to be useful for modeling contagious processes such as dis-
turbance spread, but have been broadened to include more complex neighborhood
dynamics (e.g., FORMOSAIC: Liu et al., Chapter 3). Indeed, grid-cell models
such as DISPATCH (Baker, Chapter 11) and HARVEST (Gustafson and Crow,
Chapter 12) may have roots in cellular automata, but include processes operating
at scales other than the immediate neighborhood.

This trend toward multi-scale models is paralleled by a trend toward multi-process
spatial models, exemplified in LANDIS (Mladenoff and He, Chapter 6), LANDSIM
(Roberts and Betz, Chapter 5), FORMOSAIC (Liu et al., Chapter 3) and DELTA
(Dale and Pearson, Chapter 10), but present in many of the other models, even those
with narrower purposes. For example, the fire spread model, FARSITE (Finney,
Chapter 8), uses grid-cell input data, but a vector-format to model the spreading fire
front and has exogenous climate drivers that control fire spread, as well as a spotting
routine that leapfrogs local dynamics of fire spread. The Sessions et al. (Chapter 9)
SAFE FORESTS model focuses on fire dynamics and timber harvesting, but with
other constraints. These multi-scale, multi-process models take cellular or vector
neighborhood models, that recall the automata approach, and marry them with suc-
cessional models, dispersal models, movement models, and disturbance models that
interact in a spatially explicit format that is not simply neighborhood-based.
Bottom-up models, such as cellular automata, demonstrated that complex dynamics
can arise from simple neighborhood interactions, but these new models include
important non-neighborhood processes that modify and control local neighborhood
dynamics. Underlying this shift toward multi-scale, multi-process models is a chan-
ging world view away from a simple choice between top-down or bottom-up
approaches (Baker and Mladenoff, Chapter 13).
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Current challenges in forest landscape modeling

The forest landscape models presented in the rest of this book share a common, but
varied, lineage with the historical work described in this chapter. To some degree,
most are based on either ecological disturbance and succession principles from eco-
logy and forestry, or earlier landscape transition models that were non-spatial.

How much multi-scale, multi-process detail is needed to model a forest land-
scape in a spatially explicit way? In the last chapter of this book an attempt will be
made to synthesize how the models in this book answer this question. However,
here at the beginning, only some of the relevant parts of this query will be posed.
How much of the detail of individual-tree and population processes inside forest
stands is necessary, and what are the essential processes? Are within-stand processes
alone, if replicated across the landscape, sufficient to capture the essential dynamics
of the landscape? How should stand-level processes vary in different environments?
What processes inside a stand lead to natural (e.g., fire) and human (e.g., logging)
disturbances, and how should these be modeled? Forest fragmentation is an increas-
ing global phenomenon. Do our models include the essential changes that accom-
pany fragmentation? Some landscape models include spatial dispersal and disturb-
ance spread, but are other spatial processes needed? Regional and global processes
are of increasing importance, as are local and global socioeconomic forces, and it
may be asked how well our models represent these processes. Do people play a role
in the dynamics of our models? Modelers to some extent answer these questions by
including richness of detail in processes they feel are important, and by de-
emphasizing or excluding processes that they feel are less important. However,
what is included in each model is also a function of the purpose of the model.

In reading about the models in the following chapters, consider their genealogy,
their purpose, and how these questions are answered. Viewed from two decades
ago, the achievements represented here were almost inconceivable; a decade ago
there was only a hint of the emerging directions. It is hoped you will see that these
models are headed somewhere that will be important to us, even though it clearly
will not be a single, grand, final model. Perhaps a diversity of spatial models of
landscapes can extend our vision in different ways, for various purposes and scales.
It has always been found hardest to call up the long-term vision and sweeping gaze
needed to see the landscape for the trees.
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