CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS 59

Practical Foundations of Mathematics
Cambridge Studies in Advanced Mathematics
Editorial Board: W. Fulton, D.J.H. Garling, T. tom Dieck, P. Walters

1. W.M.L. Holcombe Algebraic automata theory
2. K. Petrenko Ergodic theory
3. P.T. Johnstone Stone spaces
4. W.H. Schikhof Ultrametric calculus
5. J.-P. Kahane Some random series of functions, second edition
6. H. Cohn Introduction to the construction of class fields
7. J. Lambek & P.J. Scott Introduction to higher order categorical logic
8. H. Matsumura Commutative ring theory
9. C.B. Thomas Characteristic classes and the cohomology of finite groups
10. M. Aschbacher Finite group theory
11. J.L. Alperin Local representation theory

12, 21. P. Koosis The logarithmic integral I & II
13. A. Petersch Eigenvalues and s-numbers
14. S.J. Patterson An introduction to the theory of the Riemann ζ-function
15. H.J. Bausch Algebraic homotopy
16. V.S. Varadarajan Intro to harmonic analysis on semisimple Lie groups
17. W. Dicks & M. Dunwoody Groups acting on graphs
18. L.J. Corwin & F.P. Greenleaf Representations of nilpotent Lie groups
20. H. Klingen Introductory lectures on Siegel modular forms
21. M.J. Collins Representations and characters of finite groups
22. H. Kunita Stochastic flows and stochastic differential equations
23. P. Wojtaszczyk Banach spaces for analysts
24. J.E. Gilbert & M.A.M. Murray Clifford algebras and Dirac operators
25. A. Fröhlich & M.J. Taylor Algebraic number theory
26. K. Goebel & W.A. Kirk Topics in metric fixed point theory
27. J.P. Humphreys Reflection groups and Coxeter groups
28. D.J. Benson Representations and cohomology I & II
29. C. Allday & V. Puppe Cohomological methods in transformation groups
31. A. Ambrosetti & G. Prodi A primer of nonlinear analysis
32. A. J. Palis & F. Takens Hyperbolicity & chaos at homoclinic bifurcations
33. Y. Meyer & R. Coifman Wavelets and operators I & II
34. W. Bruns & J. Herzog Cohen–Macaulay rings
35. V. Snaith Explicit Brauer induction
36. G. Laumon Cohomology of Drinfeld modular varieties I & II
37. E.B. Davies Spectral theory of differential operators
38. J. Dinse, H. Jarchow & A. Tonge Absolutely summing operators
39. M. Mattila Geometry of sets and measures in Euclidean spaces
40. R. Pinsky Positive harmonic functions and diffusion
41. G. Tenenbaum Introduction to analytic & probabilistic number theory
42. C. Peskine Complex projective geometry
43. R. Stanley Enumerative combinatorics
44. I. Porteous Clifford algebras and the classical groups
45. M. Audin Spinning tops
46. V. Jurdjevic Geometric control theory
47. H. Volklein Groups as Galois groups
48. J. Le Potier Lectures on vector bundles
49. D. Bump Automorphic forms
50. R. Sharp & M. Brodmann Local cohomology
Practical Foundations
of Mathematics

PAUL TAYLOR
Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cambridge.org
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Paul Taylor, 1999

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing arrangements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1999

Typeset in Computer Modern 10/12.6pt using TgX.

Commentary on this book (bibliographical information, answers
to some exercises, readers' remarks and corrections) may be found
at http://www.dcs.qmw.ac.uk/~pt/Practical.Foundations/

Library of Congress Cataloguing-in-Publication Data
Taylor, Paul, 1960--
Practical Foundations of Mathematics / Paul Taylor.
xii+572pp. 23cm.
Includes bibliographical references (pp. 530-552) and index.
ISBN 0 521 63107 6 (hc.)
1. Mathematics. I. Title.
QA39.2.T493 1999
510-dc21 98-39472 CIP

ISBN 0 521 63107 6 hardback

Transferred to digital printing 2003
Contents

INTRODUCTION viii

I. FIRST ORDER REASONING 1
 1.1 Substitution 2
 1.2 Denotation and Description 11
 1.3 Functions and Relations 20
 1.4 Direct Reasoning 25
 1.5 Proof Boxes 30
 1.6 Formal and Idiomatic Proof 35
 1.7 Automated Deduction 44
 1.8 Classical and Intuitionistic Logic 52
 Exercises I 60

II. TYPES AND INDUCTION 65
 2.1 Constructing the Number Systems 67
 2.2 Sets (Zermelo Type Theory) 72
 2.3 Sums, Products and Function-Types 81
 2.4 Propositions as Types 87
 2.5 Induction and Recursion 95
 2.6 Constructions with Well Founded Relations 102
 2.7 Lists and Structural Induction 106
 2.8 Higher Order Logic 112
 Exercises II 119
Contents

III. POSETS AND LATTICES
3.1 Posets and Monotone Functions 125
3.2 Meets, Joins and Lattices 126
3.3 Fixed Points and Partial Functions 131
3.4 Domains 136
3.5 Products and Function-Spaces 140
3.6 Adjunctions 144
3.7 Closure Conditions and Induction 151
3.8 Modalities and Galois Connections 156
3.9 Constructions with Closure Conditions 161
Exercises III 169

175

IV. CARTESIAN CLOSED CATEGORIES
4.1 Categories 183
4.2 Actions and Sketches 184
4.3 Categories for Formal Languages 190
4.4 Functors 197
4.5 A Universal Property: Products 206
4.6 Algebraic Theories 212
4.7 Interpretation of the Lambda Calculus 222
4.8 Natural Transformations 235
Exercises IV 244

248

V. LIMITS AND COLIMITS
5.1 Pullbacks and Equalisers 250
5.2 Subobjects 251
5.3 Partial and Conditional Programs 255
5.4 Coproducts and Pushouts 261
5.5 Extensive Categories 268
5.6 Kernels, Quotients and Coequalisers 274
5.7 Factorisation Systems 280
5.8 Regular Categories 286
Exercises V 292

298
Contents

VI. Structural Recursion 306
 6-1 Free Algebras for Free Theories 307
 6-2 Well Formed Formulae 315
 6-3 The General Recursion Theorem 322
 6-4 Tail Recursion and Loop Programs 329
 6-5 Unification 339
 6-6 Finiteness 343
 6-7 The Ordinals 352
 Exercises VI 360

VII. Adjunctions 367
 7-1 Examples of Universal Constructions 368
 7-2 Adjunctions 375
 7-3 General Limits and Colimits 382
 7-4 Finding Limits and Free Algebras 391
 7-5 Monads 397
 7-6 From Semantics to Syntax 404
 7-7 Gluing and Completeness 412
 Exercises VII 420

VIII. Algebra with Dependent Types 426
 8-1 The Language 429
 8-2 The Category of Contexts 437
 8-3 Display Categories and Equality Types 449
 8-4 Interpretation 456
 Exercises VIII 467

IX. The Quantifiers 469
 9-1 The Predicate Convention 470
 9-2 Indexed and Fibred Categories 476
 9-3 Sums and Existential Quantification 487
 9-4 Dependent Products 495
 9-5 Comprehension and Powertset 506
 9-6 Universes 512
 Exercises IX 523

BIBLIOGRAPHY 530
INDEX 553
Introduction

FOUNDATIONS have acquired a bad name amongst mathematicians, because of the reductionist claim analogous to saying that the atomic chemistry of carbon, hydrogen, oxygen and nitrogen is enough to understand biology. Worse than this: whereas these elements are known with no question to be fundamental to life, the membership relation and the Sheffer stroke have no similar status in mathematics.

Our subject should be concerned with the basic idioms of argument and construction in mathematics and programming, and seek to explain these (as fundamental physics does) in terms of more general and basic phenomena. This is “discrete math for grown-ups”.

A moderate form of the logicist thesis is established in the tradition from Weierstrass to Bourbaki, that mathematical treatments consist of the manipulation of assertions built using \land, \lor, \Rightarrow, \forall and \exists. We shall show how the way in which mathematicians (and programmers) — rather than logicians — conduct such discussions really does correspond to a certain semi-formal system of proof in (intuitionistic) predicate calculus. The working mathematician who is aware of this correspondence will be more likely to make valid arguments, that others are able to follow. Automated deduction is still in its infancy, but such awareness may also be expected to help with computer-assisted construction, verification and dissemination of proofs.

One of the more absurd claims of extreme logicism was the reduction of the natural numbers to the predicate calculus. Now we have a richer view of what constitutes logic, based on a powerful analogy between types and propositions. In classical logic, as in classical physics, particles enact a logical script, but neither they nor the stage on which they perform are permanently altered by the experience. In the modern view, matter and its activity are created together, and are interchangeable (the observer also affects the experiment by the strength of the meta-logic).

This analogy, which also makes algebra, induction and recursion part of logic, is a structural part of this book, in that we always treat the
Introduction

simpler propositional or order-theoretic version of a phenomenon as well as the type or categorical form.

Besides this and the classical symmetry between \land and \lor and between \forall and \exists, the modern rules of logic exhibit one between introduction (proof, element) and elimination (consequence, function). These rules are part of an even wider picture, being examples of adjunctions.

This suggests a new understanding of foundations apart from the mere codification of mathematics in logical scripture. When the connectives and quantifiers have been characterised as (universal) properties of mathematical structures, we can ask what other structures admit these properties. Doing this for coproducts in particular reveals rather a lot of the elementary theory of algebra and topology. We also look for function spaces and universal quantifiers among topological spaces.

A large part of this book is category theory, but that is because for many applications this seems to me to be the most efficient heuristic tool for investigating structure, and comparing it in different examples. Plainly we all write mathematics in a symbolic fashion, so there is a need for fluent translations that render symbols and diagrams as part of the same language. However, it is not enough to see recursion as an example of the adjoint functor theorem, or the propositions-as-types analogy as a reflection of bicategories. We must also contrast the examples and give a full categorical account of symbolic notions like structural recursion.

You should not regard this book as yet another foundational prescription. I have deliberately not given any special status to any particular formal system, whether ancient or modern, because I regard them as the vehicles of meaning, not its cargo. I actually believe the (moderate) logicist thesis less than most mathematicians do. This book is not intended to be synthetic, but analytic — to ask what mathematics requires of logic, with a view to starting again from scratch [Tay98].

Advice to the reader. Technical books are never written and seldom read sequentially. Of course you have to know what a category is to tackle Chapter V, but otherwise it is supposed to be possible to read any of at least the first six chapters on the basis of general mathematical experience alone; the people listed below were given individual chapters to read partly in order to ensure this. There is more continuity between sections, but again, if you get stuck, move on to the next one, as secondary material is included at the end of some sections (and subsections). The book is thoroughly indexed and cross-referenced to take you as quickly as possible to specific topics; when you have found what you want, the cross-references should be ignored.
Introduction

The occasional anecdotes are not meant to be authoritative history. They are there to remind us that mathematics is a human activity, which is always done in some social and historical context, and to encourage the reader to trace its roots. The dates emphasise quite how late logic arrived on the mathematical scene. The footnotes are for colleagues, not general readers, and there are theses to be written à propos of the exercises.

The first three chapters should be accessible to final year undergraduates in mathematics and informatics; lecturers will be able to select appropriate sections themselves, but should warn students about parenthetical material. Most of the book is addressed to graduate students; Section 6.4 and the last two chapters are research material. I hope, however, that every reader will find interesting topics throughout the book.

Chapters IV, V and VII provide a course on category theory. Chapter III is valuable as a prelude since it contains many of the results (the adjoint functor theorem, for example) in much simpler form.

Sections 1.1–5 (not necessarily in that order), 2.3, 2.4, 2.7, 2.8, 3.1–5, 4.1–5 and 4.7 provide a course on the semantics of the λ-calculus.

For imperative languages, take Sections 1.4, 1.5, 4.1–6, 5.3, 5.5 and 6.4.

An advanced course on type theory would use Chapter IV as a basis, followed by Chapters V and IX with Sections 7.6, 7.7 to give semantic and syntactic points of view on similar issues.

Chapter VI and Section 9.6 discuss topics in symbolic logic using the methods category theory.

Acknowledgements. Pierre Ageron, Lars Birkedal, Andreas Blass, Ronnie Brown, Gian-Luca Cattani, Michel Chaudron, Thierry Coquand, Robert Dawson, Luis Dominguez, Peter Dybjer, Susan Eisenbach, Fabio Gadducci, Gillian Hill, Martin Hyland, Samin Ishtiaq, Achim Jung, Stefan Kahrs, Jürgen Koslowski, Steve Lack, Jim Lambek, Charles Matthews, Paddy McCrudden, James Moloney, Edmund Robinson, Pino Rosolini, Martin Sadler, Andrea Schalk, Alan Sexton, Thomas Streicher, Charles Wells, Graham White, Andrew Wilson and Todd Wilson took the trouble to read a chapter or more of the draft and made detailed criticisms of it. Mike Barr, Peter Freyd, Peter Johnstone, Andy Pitts and Phil Scott have also patiently given illuminating answers to many stupid questions, and I learnt the box method from Krysia Broda. These people’s remarks have often resulted in substantial rewriting of the text, but even those comments that I chose not to use were illuminating, and I hope to publish some of them as a Web “companion” to the book.
Introduction

When I began this book in 1991, I was a member of a lively research group led by Samson Abramsky at Imperial College. Those who were there, including Roy Crole, Simon Gay, Radha Jagadeesan, Achim Jung, Yves Lafont, François Lamarche, Ian Mackie, Raja Nagarajan, Luke Ong, Duško Pavlović, Christian Retoré, Leopoldo Román, Mark Ryan, Mike Smyth and Steve Vickers, provided much stimulation. But in 1996 the management saw fit first to deprive me of my office, and later to withhold my EPSRC salary for not being in that office. I am deeply indebted to everyone at Queen Mary and Westfield College for supporting me at this distressing time: besides being a friendlier place all round, QMW has a much healthier working environment. I have since learned a lot from Richard Bornat, Peter Burton, Keith Clarke, Adam Eppendahl, Peter Landin, Peter O'Hearn, David Pym, Edmund Robinson and Graham White.

Jim Lambek was the first of my senior colleagues to express appreciation of this work. At many times when I might otherwise have given up, Carolyn Brown, Adam Eppendahl, Pino Rosolini and Graham White told me repeatedly that it was worth the effort.

Since this is my first and a very personal book, I would also like to record my appreciation of those who have taught me and encouraged my career in mathematics, beginning with my parents, Brenda and Ced(ric) Taylor. Ruth Horner of Stoke Poges county primary school, Buckinghamshire; Christian Puritz, Bert Scott, Doris Wilson and the late Henry Talbot at the Royal Grammar School, High Wycombe; Béla Bollobás, Andrew Casson and Pelham Wilson when I was an undergraduate at Trinity.

Typography. I composed this book using Emacs and typeset it all myself in TeX: I cannot conceive of doing research without these two programs, and all of the software that I have used is public domain (for a long time Mark Dawson kept this going for me). The commutative diagram, proof tree, proof box and design macros are my own. I would like to thank Vera Brice and Leslie Robinson of the London College of Printing for their suggestions and an interesting course in book design. Without Peter Jackson’s eagle eye and Roger Astley’s patient guidance at Cambridge University Press, however, there would be far more errors and idiosyncracies than you see here now.