An Introduction to Star Formation

Guiding the reader through all the stages that lead to the formation of a star such as our Sun, this textbook aims to provide students with a complete overview of star formation. It examines the underlying physical processes that govern the evolution from a molecular cloud core to a main-sequence star, and focuses on the formation of solar-mass stars. Each chapter combines theory and observation, helping readers to connect with, and understand, the theory behind star formation. Beginning with an explanation of the interstellar medium and molecular clouds as sites of star formation, subsequent chapters address the building of typical stars and the formation of high-mass stars, concluding with a discussion of the by-products and consequences of star formation. This is a unique, self-contained text with sufficient background information for self-study, and is ideal for students and professional researchers alike.

DEREK WARD-THOMPSON is Deputy Head of the School of Physics and Astronomy at Cardiff University. An observer in the field of molecular clouds and protostars, Professor Ward-Thompson’s research interests lie in observing the formation of stars and planets, particularly the very earliest stages of star formation.

ANTHONY WHITWORTH is a Professor in the School of Physics and Astronomy at Cardiff University. Professor Whitworth’s main area of research lies in the theoretical modelling of the formation of stars and brown dwarfs.

This book is based on lectures given by the authors, at Cardiff University and elsewhere, on star formation.
An Introduction to
Star Formation

Derek Ward-Thompson
School of Physics and Astronomy, Cardiff University

Anthony P. Whitworth
School of Physics and Astronomy, Cardiff University
For Jane, Hilary and the boys
Contents

<table>
<thead>
<tr>
<th>List of illustrations</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 About this book
1.2 The stellar life-cycle
1.3 The space between the stars
1.4 The distribution of the stars
1.5 The magnetic field
1.6 Star formation in a galactic context
1.7 Known sites of contemporary star formation
1.8 The initial mass function
1.9 Objectives of star-formation theory

2 Probing star formation

2.1 Introduction
2.2 Properties of photons
2.3 Intensity
2.4 Flux
2.5 Radiant energy density
2.6 Continuum radiation – studying the dust
2.7 Radiative transfer
2.8 Calculating the dust mass
2.9 Line radiation – studying the gas

3 The ISM – the beginnings of star formation

3.1 Introduction
3.2 The 21-cm line of atomic hydrogen
3.3 Molecular gas
3.4 Line shapes and the motion of the gas
3.5 Absorption lines – searchlights through the ISM
3.6 The curve of growth
3.7 The use of absorption lines
4 Molecular clouds – the sites of star formation 65
4.1 The equation of state 65
4.2 Fluid mechanics of molecular clouds 66
4.3 Gravitational instability 69
4.4 The virial theorem 72
4.5 Observations of molecular clouds 75
4.6 Turbulence in molecular clouds 78
4.7 Magnetic fields in molecular clouds 83
4.8 Chemistry in molecular clouds 87

5 Fragmentation and collapse – the road to star formation 95
5.1 The road to star formation 95
5.2 Theoretical collapse solutions 96
5.3 The minimum mass of a star 98
5.4 Effects of the magnetic field 102
5.5 Observations of the initial conditions of collapse 108
5.6 Pre-stellar cores and the IMF 111
5.7 Binary and multiple star formation 113

6 Young stars, protostars and accretion – building a typical star 117
6.1 Pre-main-sequence evolution 117
6.2 Hayashi tracks 119
6.3 Henyey tracks 125
6.4 Accretion onto protostars 128
6.5 Observations of protostars – the birth line 135
6.6 Millimetre-wave continuum observations 136
6.7 Millimetre-wave spectroscopy 138
6.8 Infrared and optical observations 139

7 The formation of high-mass stars, and their surroundings 143
7.1 Introduction 143
7.2 The main stages of high-mass star formation 144
7.3 Building a high-mass star 149
7.4 Line radiation from HII regions 153
7.5 Recombination rate and emission measure 156
7.6 Free-free radio continuum emission 158
7.7 Size of an HII region – Strömgren radius 161
7.8 Ionisation fronts 162
7.9 Expansion of an HII region 166
8 By-products and consequences of star formation 173

8.1 Introduction 173
8.2 Circumstellar discs 173
8.3 Bipolar outflows 175
8.4 Disc fragmentation 179
8.5 Planet formation 180
8.6 Brown dwarf stars 184
8.7 Galaxy formation 187
8.8 Starburst galaxies 190
8.9 The epoch of star formation 191

List of mathematical symbols 195
List of figure credits 201
Index 205
Illustrations

1.1 A rough sketch of the Hertzsprung–Russell diagram, illustrating the main sequence, where a solar-type star spends the majority of its life.

1.2 An optical image of the dark cloud Barnard 68. Note how the background stars are not visible through the cloud.

1.3 A map of the Ophiuchus molecular cloud complex. The contours represent brightness of carbon monoxide (CO), which is taken as a tracer of the molecular gas as a whole.

1.4 Schematic view of the Galaxy from the side, showing the principal stellar components, the locations of the Galactic Centre and the Sun, and the location of the interstellar medium.

1.5 The Orion Nebula, containing the Trapezium Cluster, as seen by the Hubble Space Telescope.

1.6 The polarisation of starlight projected onto Galactic coordinates. This is believed to be tracing the large-scale magnetic field in the interstellar medium of our Galaxy.

1.7 Infrared image of the spiral galaxy M81 showing the star-formation regions strung out along the spiral arms of the galaxy. Inset is an optical image illustrating that these regions are much less clear in the optical. This is because optical wavelengths are extinguished by the dust in star-formation regions.

1.8 An optical image of the globular cluster M80.

1.9 An optical image of the Pleiades open cluster.

1.10 Sequential, self-propagating star formation, as seen in the Orion region (see also Figure 1.5). The solid contours show the molecular cloud. The dashed contours encircle the main OB association subgroups, which are labelled as 1a, 1b and 1c. Orion 1a is the oldest, 1b is the next oldest, and 1c is the youngest. Compare this with the theoretical picture in Figure 1.11.
1.11 Theoretical, sequential, self-propagating star formation, driven by the expansion of an HII region. 15
1.12 The initial mass function, here plotted as log(\(\xi\)), where \(\xi = M\phi(M)\), against log(\(m\)), where \(m = M/M_\odot\). 16
2.1 The spatial and directional dependence of the intensity of a radiation field. 22
2.2 The integrated intensity of a line is obtained by subtracting the underlying continuum intensity; this leaves the shaded area. 23
2.3 The line of sight to a background source through an optically active medium. 27
2.4 Two pictures of the Horsehead Nebula in Orion. On the left is an optical image, while on the right is a millimetre-wave image (shown in negative, so that bright emission is black). The dust which is absorbing light in the optical image is re-emitting in the millimetre-wave. Furthermore, a bright object in the horse’s throat becomes visible in the millimetre-wave, which was obscured in the optical. 30
2.5 Bound energy levels. 32
3.1 Images of other galaxies taken in the 21-cm line of atomic hydrogen (HI). The images are tracing the atomic gas in the interstellar medium of these galaxies. 40
3.2 Lines of sight through an atomic hydrogen cloud in the ideal case. 44
3.3 21-cm absorption line in the spectrum of a bright background continuum source. 45
3.4 Optically thin 21-cm emission line. 46
3.5 Optically thick 21-cm emission line. 47
3.6 Carbon monoxide (CO) image of the molecular cloud in the constellation Taurus. CO is used as a tracer of molecular gas in general. A great deal of structure can be seen in the cloud. 49
3.7 Convolution of the natural profile, \(\phi_N\) (dotted curve), with the Doppler profile, \(\phi_D\) (dashed curve), to produce the overall profile \(\phi_C\) (full curve). 55
3.8 The line of sight to a bright, distant star intercepts both the general interstellar medium, and the immediate circumstellar medium of the star. 56
3.9 (a) A group of absorption lines, all due to the same transition, but in different clouds along the line of sight to the background star. (b) The same set of lines after smoothing and normalising to the background continuum. 59
3.10 Three different types of absorption line. From left to right, unsaturated, beginning to saturate, strongly saturated. 60

3.11 A curve of growth. 61

4.1 An arbitrary volume V, contained by a closed surface S. dS is an infinitesimal vector area element, whose direction by convention is normal to the surface S and out of V. At the position of dS the density of the fluid is ρ and its velocity is v, so matter flows out of V across dS at a rate $\rho v . dS$. 67

4.2 Image of the molecular cloud in the constellation of Ophiuchus, taken at a wavelength of 100 microns. Structure in the form of cores and filaments can be seen on all scales within the image. 72

4.3 Graph of σ versus radius (here labelled S), on a log-log scale, for 273 different molecular clouds. The straight line illustrates one of the Larson relations. 76

4.4 Graph of linewidth versus size on a log-log plot for molecular cloud cores in the Orion region. 79

4.5 Spectral line profiles of molecular clouds plotted in such a way that a Gaussian line profile would appear as a straight line (the spectra are also shown as two pairs of half-profiles). The fact that none of the spectra can be fitted by a single straight line indicates that there is excess emission in the line wings, which is interpreted as evidence of turbulent motions in the clouds. 80

4.6 Plot of the dispersion in extinction against extinction A_V for the IC 5146 molecular cloud. 82

4.7 Polarisation map of a molecular cloud core showing the magnetic field direction inferred in the plane of the sky from the measurements. 83

4.8 Column density profile across a molecular cloud core, computed in two different ways. The crosses represent measurements made in dust continuum observations, and the circles are measurements of CO. Note how the CO profile lies below the dust continuum profile, implying that there is much less CO (by a factor of 2–3) in the gas phase at the centre of the core than would be predicted. This is believed to be due to the CO freezing out in solid form onto the surfaces of dust grains in the densest part of this core. 90

5.1 The logarithmic variation of density with radius as a function of time in one model of a collapsing isothermal cloud, in which the outer boundary is held fixed. Each
curve is labelled with the time elapsed since collapse began (in arbitrary units). Note how the density profile approximates to r^{-2} in the outer parts.

5.2 Hierarchical fragmentation breaks up a large cloud into smaller fragments.

5.3 Map of the magnetic field in the star-forming region NGC 1333. The magnetic field direction is implied from polarisation measurements. The two sets of vectors are simply measurements at two different wavelengths. Note the hour-glass, or egg-timer, shape, indicating that some collapse has occurred perpendicular to the field direction, causing the field to be pinched in at the centre. This is a characteristic indicator of magnetic flux freezing, where the field and the matter move together.

5.4 Schematic picture illustrating how cloud core rotation can lead to twisting of the magnetic field lines. Torsional twists travelling along the field lines can carry away excess angular momentum.

5.5 A typical pre-stellar core seen at four different wavelengths from the far-infrared to the submillimetre regime: (a) 170 μm; (b) 200 μm; (c) 450 μm; (d) 850 μm. The resolution and scale of the images are somewhat different. The upper two images cover an area of $\sim 0.6 \times 0.4$ pc (where 1 pc = 3×10^{16} m) with angular resolution equivalent to ~ 0.05 pc at the distance of the cloud. The lower two images cover a field ~ 0.1 pc in extent with angular resolution ~ 0.007 pc, or ~ 1400 AU (where 1 AU = 1.5×10^{11} m), and only show the most dense, inner region of the core, which is a few thousand AU in extent.

5.6 Observed radial profile of pre-stellar core L1544 (left) compared to the theoretical predictions of a model of an initially pressure-supported core, subsequently contracting under self-gravity, moderated by ambipolar diffusion (right). The observed profile is plotted as flux density vs radius on a log-log plot. The dashed line shows how a point source would look on the same plot. The theoretical profiles are plotted as volume density vs radius on a log-log plot at a sequence of predicted times labelled t_0 to t_6, showing how a core is predicted to evolve under this model. The shapes of the theoretical predictions are qualitatively similar to the observations, with a flat inner region of the core and a steeper profile towards the edge.
5.7 Broadband continuum emission from a typical pre-stellar core. The data points are measurements made at various far-infrared and submillimetre wavelengths. The smooth curve is a fit to the data of the form described by equation 5.47. 111

5.8 An 850-μm continuum image of the Oph main molecular cloud. The image extent is half a degree, which corresponds to a linear scale of ~1.2 pc at the distance of this cloud. This cloud contains a number of pre-stellar cores and protostars (see Chapter 6). One of each type of core is labelled: the pre-stellar core SMM1; and the protostar VLA1623. 112

5.9 The mass distribution of the pre-stellar cores in Orion. It is plotted simply as a histogram of number versus mass. The histogram can be fitted by three functions very similar to those for the IMF (equation 1.5), which is shown as a thinner solid line. The vertical dashed line shows the point below which the data are incomplete, due to the instrumental sensitivity. 113

5.10 The Ophiuchus molecular cloud region. The crosses mark the positions of the newly formed stars, as detected in the infrared. The contour marks the approximate edge of the dense molecular cloud material. 114

5.11 Histogram of number of binary systems versus log(P), where P is the orbital period in days. 115

6.1 Theoretical pre-main-sequence tracks on the Hertzsprung–Russell diagram. 118

6.2 The different components of a protostellar system. 120

6.3 The variation of inward radial velocity with radius for different solutions to the Bondi accretion problem. Those marked with dotted or dashed lines are not physically acceptable. 134

6.4 The variation of density (left-hand side) and inward radial velocity (right-hand side) with radius, for the physically acceptable solutions to the Bondi accretion problem. 135

6.5 Observations of T Tauri stars on the Hertzsprung–Russell diagram (open circles). The thin line represents the pre-main-sequence track of a 1 M⊙ star. The thick line represents the birth line. Note how the observed stars lie almost exclusively to the left of this line. 136

6.6 Submillimetre continuum image of the prototype Class 0 protostar designated VLA 1623. 137
6.7 Spectral energy distribution of the Class 0 protostar VLA1623. 138
6.8 Typical double-peaked spectral line infall profile of a protostar. The blue asymmetry can be clearly seen. 139
6.9 Simple graphical explanation of how an asymmetric infall profile may arise. 140
6.10 Schematic diagram of the different protostar stages. 141
6.11 Discs, jets and outflows around young stars. 142
7.1 An image of an infrared-dark core. The grey-scale shows emission at 8 μm. The contours show emission at 850 μm. Notice the dark area in the 8-μm emission. This is an infrared-dark core. The contours of 850-μm emission peak at this point, showing that the core emits at the very much longer submillimetre wavelengths. 145
7.2 Pictures of three hot cores seen in the mid-infrared at 18.5 μm (left-hand column) and 7.9 μm (middle and right-hand columns). Contours represent brightness. The right-hand column shows enhanced resolution images of the middle column, using a technique which attempts to improve the resolution of the data. 146
7.3 A radio image of a group of HII regions. There is an extended classical HII, as well as two compact HII regions marked ‘A’ and ‘B’. 147
7.4 An optical image of an HII region. Note how the bright stars that have formed in the centre of the cloud have dispersed the surrounding material. 148
7.5 Schematic cross-section of a giant molecular cloud, in which an OB subgroup forms and excites a compact HII region; the HII region then expands under its internal pressure; finally the HII region breaks out of the GMC (cf. Figure 1.11). 149
7.6 Evolutionary tracks in the Hertzsprung–Russell diagram for non-accreting protostars (thick black lines) and for accreting protostars (grey lines) – see text for details. 152
7.7 The cycle of recombination, de-excitation and ionisation in an HII region. 155
7.8 The free–free continuum spectrum from an HII region, showing the transition from optically thick at $\nu \ll \nu_{\text{turnover}}$ to thin at $\nu \gg \nu_{\text{turnover}}$. 160
7.9 The variation of the degree of ionisation x with radius r, in the vicinity of the boundary of an HII region. 165
7.10 The variation of density with radius through an HII region and the swept-up shell of neutral gas surrounding it. 169
List of illustrations xvii

8.1 Image of a bipolar outflow. 176
8.2 Hubble Space Telescope images of young stars with oppositely directed jets, apparently emerging along the magnetic poles. In the upper left-hand image the disc around the young star is also visible. 177
8.3 The ‘bullets’ of Orion. A violent star-formation event in which multiple jets, or bullets, appear to be emerging from a small region in the Orion star-forming complex. 178
8.4 A plot of mass vs orbital radius for low-mass stars orbiting stars of solar-type mass. The sparsely populated region of parameter space surrounded by the dashed box to the upper left of the figure is known as the brown dwarf desert. 185
8.5 The collapse of a proto-galactic gas cloud. 187
8.6 Optical image of the starburst galaxy M82. 191
8.7 Optical image of two colliding galaxies, known as the Antennae. The effect of the collision can be to enhance the star-formation rate in the centre of one (or both) and create a starburst galaxy. 192
8.8 A plot of the star-formation rate as a function of age of the Universe, as measured by the red-shift z. Zero is the present day and increasing z indicates decreasing age of the Universe. 193
Preface

This book is directed at the student undertaking a course in star formation for the first time. This may be in the later years of an undergraduate degree in physics, astrophysics, or physics with astronomy. Alternatively, it may be that the student only meets this subject for the first time during the first years of a masters degree. In either case we have assumed that the student already has a grounding in physics and mathematics, including, for example, Maxwell’s equations, quantum mechanics and the laws of thermodynamics. Nevertheless, we find from teaching experience that brief reminders to students of things they learnt in other courses are generally welcomed as helpful. Hence, we remind the reader of some of the important points from other branches of physics where they are relevant.

We assume only a minimal knowledge of astronomy, and we derive the necessary astrophysical equations as we go along. We assume no prior knowledge of the subject of star formation itself and begin from first principles. Throughout the book we attempt to stay on ground that is firmly established, and try to avoid that which is trendy or the latest discovery. Experience has taught us that these matters often become outdated much more quickly than the solid foundations on which the subject is based. In cases where we stray onto less sure footing, we inform the reader that we are doing so.

The book does not aim to be a comprehensive encyclopedia of star formation, but merely an introductory text, as the title suggests. The biggest problem when compiling such a work is knowing what to leave out. We have tried largely to include topics that lend themselves to mathematical demonstration, even if that leads to slight over-simplification of cases encountered in the real Universe in this very complex field. We therefore apologise in advance if we have omitted any reader’s favourite topic or detail. However, we hope that the reader will nevertheless find the book useful.

The ordering of the book is that we first assemble the necessary tools, and then we cover all aspects of star formation in the order in which they occur for solar-type stars in an evolutionary sense. Then we look at some of the ways in which higher-mass stars differ from this picture. Chapter 1
Preface

sets the scene with some introductory and background material. Chapter 2 discusses the electromagnetic radiation that we receive from star-forming regions, and how we use this to discover the physical properties of those regions. Chapter 3 looks at the interstellar medium, where the raw materials exist for the formation of future generations of stars. Chapter 4 studies molecular clouds, where the majority of star formation takes place, to discover the initial conditions for star formation.

Chapter 5 describes the issues associated with collapse and fragmentation on the way to forming a star. Chapter 6 covers the growth of a star from the seed of a protostar to a main-sequence star of roughly solar mass, through its pre-main-sequence evolution. Chapter 7 examines some of the issues peculiar to higher-mass stars and the effects they have on their surroundings. Finally, Chapter 8 gives a few ‘tasters’ of subjects that flow from star formation, which will hopefully lead the reader into further related topics.

There is an index as well as a list of symbols, to aid the reader. Where possible we have tried to avoid the use of the same symbol for two different meanings. However, we have also tried to use the symbols that are most commonly used in the scientific literature, so that the student is not lost when moving on from this book. Occasionally this leads to clashes. So we have made it clear in each case, when defining every symbol, what meaning we are using for that symbol, and wherever possible we have used a different font or subscript to remove ambiguities.

Our aim is that a student who has read and understood this book should be ready to undertake a higher degree in this field, to read and understand more advanced research texts in the subject, and to embark upon research of their own.

There are many people we would like to thank, who helped in the fashioning of this book, including many students, both undergraduate and postgraduate, who have given helpful feedback and comments on the text. We wish to thank a number of our postdocs, who have also read the text and commented on it, including Annabel Cartwright, Jason Kirk, David Nutter and Dimitris Stamatellos. We would also like to thank Peter Brand, Shantanu Basu and Jonathan Rawlings, who each read and commented on parts of the book, although any mistakes that may remain are entirely our own. We wish to thank Cambridge University Press for their patience, especially Simon Mitton, Adam Black, Jacqueline Garget, Vince Higgs and Claire Poole. Finally, we wish to thank our wives and families for putting up with us!

Derek Ward-Thompson
Anthony Whitworth
Cardiff
March 2010