

Nerve Cells and Animal Behaviour

Second Edition

This new edition of **Nerve Cells and Animal Behaviour** has been updated and expanded by Peter Simmons and David Young in order to offer a comprehensive introduction to the field of neuroethology while still maintaining the accessibility of the book to university students. Two new chapters have been added, broadening the scope of the book by describing changes in behaviour and how networks of nerve cells control behaviour.

The book explains the way in which the nervous systems of animals control behaviour without assuming that the reader has any prior knowledge of neurophysiology. Using a carefully selected series of behaviour patterns, students are taken from an elementary-level introduction to a point at which sufficient detail has been assimilated to allow a satisfying insight into current research on how nervous systems control and generate behaviour. Only examples for which it has been possible to establish a clear link between the activity of particular nerve cells and a pattern of behaviour have been used.

Important and possibly unfamiliar terminology is defined directly or by context when it first appears and is printed in bold type. At the end of each chapter, the authors have added a list of suggestions for further reading, and specific topics are highlighted in boxes within the text.

Nerve Cells and Animal Behaviour is essential reading for undergraduate and graduate students of zoology, psychology and physiology and serves as a clear introduction to the field of neuroethology.

PETER SIMMONS is a Lecturer in the Department of Neurobiology, University of Newcastle upon Tyne, UK, and DAVID YOUNG is a Reader in the Department of Zoology, University of Melbourne, Australia. Both authors regularly publish their research in insect neuroethology.

Nerve cells and animal behaviour

SECOND EDITION

PETER J SIMMONS and DAVID YOUNG

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain

© Cambridge University Press 1999

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published 1989 Second edition published 1999

Typeface Utopia 9.25/14 pt. System QuarkXPress® [SE]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Simmons, Peter (Peter John), 1952-

Nerve cells and animal behaviour / Peter Simmons and David Young. – 2nd ed.

p. cm.

Rev. ed. of: Nerve cells and animal behaviour / David Young. 1989. ISBN 0 521 62216 6 (hardcover)

1. Neurobiology. 2. Neurons. 3. Animal behavior.

4. Neurophysiology. I. Young, David, 1942 Feb. 25— II. Young, David, 1942 Feb. 25—. Nerve cells and animal behaviour.

III. Title.

QP356.Y68 1999

573.8'6-dc21 99-11620 CIP

ISBN 0 521 62216 6 hardback ISBN 0 521 62726 5 paperback

Transferred to digital printing 2003

CONTENTS

	Preface	ix
1	Introduction	1
1.1	Nervous systems and the study of behaviour	1
1.2	Scope and limitations of neuroethology	2
1.3	Neural implications of ethological results	4
1.4	Sign stimuli in amphibians	9
1.5	Neuroethology of a releasing mechanism	11
1.6	Control theory and nervous systems	15
1.7	Conclusions	17
	Further reading	18
2	Nerve cells	20
2.1	Basic organisation of nerve cells	20
2.2	Neuron physiology and action potentials	26
2.3	Synapses	30
2.4	Integration of postsynaptic potentials	33
2.5	Comparison of spikes and graded potentials	39
2.6	Additional mechanisms in integration	39
2.7	Conclusions	40
	Further reading	41
3	Giant neurons and escape behaviour	42
3.1	Introduction	42
3.2	Giant neurons and the crayfish tail flip	44
3.3	The lateral giant interneuron: input and output	49
3.4	The decision to initiate startle behaviour	52
3.5	Executive functions of the lateral giant neuron	55

© Cambridge University Press

vi	Contents	
3.6	Summary of pathways in crayfish startle behaviour	59
3.7	Mauthner neurons and the teleost fast start	61
3.8	Excitation and inhibition in the Mauthner neuron	65
3.9	Outputs and executive functions of the Mauthner neuron	67
3.10	The startle reaction of a cockroach	69
3.11	Conclusions	74
	Further reading	75
4	Capturing sensory information	76
4.1	Introduction	76
4.2	Basic receptor mechanisms: the campaniform organ	77
4.3	Summary of basic mechanisms	83
4.4	Essential properties of eyes	85
4.5	Design features of eyes	86
4.6	Photoreceptors and the receptor potential	91
4.7	Conclusions	96
	Further reading	97
5	Stimulus filtering: vision and motion detection	99
5.1	Introduction	99
5.2	The insect visual system	100
5.3	Neuronal coding in the insect lamina	102
5.4	Optomotor neurons in flies	109
5.5	Figure-ground neurons of the lobula plate	114
5.6	A mechanism for directional selectivity	114
5.7	Summary of fly optomotor neurons	121
5.8	Collision warning neurons in the locust	122
5.9	Conclusions	127
	Further reading	128
6	Hearing and hunting: sensory maps	129
6.1	Introduction	129
6.2	Prey localisation by hearing in owls	131
6.3	Auditory interneurons and sound localisation	135
6.4	Synthesising a neuronal map of auditory space	138
6.5	The echolocation sounds of bats	142

	Contents	vii
6.6	Interception of flying prey by bats	147
6.7	The auditory system and echolocation	148
6.8	Auditory specialisations for echo ranging	152
6.9	Auditory specialisations for Doppler shift analysis	158
6.10	Conclusions	162
	Further reading	163
7	Programs for movement	165
7.1	Introduction	165
7.2	Locusts and their flight	166
7.3	The flight engine	167
7.4	The flight program	169
7.5	Generation of the flight rhythm	171
7.6	Interneurons of the flight generator	172
7.7	Proprioceptors and the flight motor pattern	178
7.8	Steering and initiating flight	182
7.9	Overall view of locust flight	184
7.10	Triggering and maintaining escape swimming in Tritonia	186
7.11	Swimming by young Xenopus tadpoles	191
7.12	Circuit reconfiguration in the stomatogastric ganglion of the	
	lobster	194
7.13	Conclusions	198
	Further reading	199
8	Circuits of nerve cells and behaviour	201
8.1	Introduction	201
8.2	Neuronal activity during different behaviours in Aplysia	202
8.3	Optical monitoring of neuronal activity	204
8.4	Local bending reflexes in the leech	206
8.5	Modelling a network of neurons	209
8.6	Local reflex movements of a locust's leg	212
8.7	Local spiking interneurons	213
8.8	Non-spiking interneurons	215
8.9	Organisation of neurons that control reflex movements	217
8.10	Conclusions	219
	Further reading	220

viii	Contents	
9	Nerve cells and changes in behaviour	221
9.1	Introduction	221
9.2	Growth and metamorphosis in insects	222
9.3	Ecdysis in a hawk moth	222
9.4	Remodelling neurons during metamorphosis	225
9.5	Associative learning and the proboscis extension reflex in	228
	honey bees	
9.6	Neuronal pathways and conditioning	230
9.7	The role of an identified neuron in conditioning	232
9.8	Bird song and its production	235
9.9	The development of song	239
9.10	Neural centres for hearing and singing	240
9.11	Development of song nuclei	242
9.12	Conclusions	244
	Further reading	246
	References	248
	Index	262

PREFACE

Our aim in this book is to introduce university students to research on nervous systems that is directly relevant to animal behaviour, and to do so at a level that assumes no detailed knowledge of neurophysiology. Many topics that fall within the scope of neurobiology are omitted or passed over lightly, and attention is concentrated on particular examples that illustrate clearly how the activity of nerve cells is linked with animal behaviour. Since the first edition was published, many new books on neurobiology have appeared, but most concentrate on the cellular and physiological aspects of the nervous system. By reviewing some of the modern stories in neuroethology, we hope that this book will also be useful to postgraduate students and others who wish to learn something of the way in which behaviour is controlled.

Each major topic in Chapters 3–9 is dealt with as far as possible by introducing a particular type of behaviour and then working towards a description of how nerve cells control it. We have selected subjects from studies in which the links between nerve cells and animal behaviour are particularly clear. In doing this, we hope to illustrate the principles that have been revealed in modern research in neuroethology. Inevitably, there are many interesting stories that we have not been able to touch upon.

Readers who are familiar with the first edition of the book will notice several changes in content and arrangement. The final two chapters, on circuits of nerve cells and on plasticity in behaviour, are completely new. In order to provide an early illustration of how activity in nerve cells can be related to animal behaviour, we now describe work on prey detection by toads in the first chapter, and the chapter on startle behaviour is placed earlier in the book than it was in the previous edition. New material has been added in several places, particularly in Chapters 3, 5 and 7. In order to

ix

x Preface

make room for this new material, we have had to omit the chapter on intraspecific communication.

To help readers to come to grips with unfamiliar terms and concepts, many of these are set in **bold type** the first time they appear in the book, as well as in the index. Anyone who studies neurobiology will soon discover that it has many side branches, linking one story to another or to other branches of biology. We have included brief introductions to a few of these by means of boxes in some chapters. These boxes do not have to be read as part of the main text, but are meant to complement it by providing useful and interesting, relevant information.

Suggestions for further reading are given at the end of each chapter, and major references to points of detail are scattered through the text and listed at the end of the book. The references in the figure legends also draw attention to relevant papers as well as indicating our grateful acknowledgement of material from other authors that we have incorporated into the figures.

We would like to thank many colleagues who have given useful comments on various aspects of the book, particularly Claire Rind and a number of undergraduate and postgraduate students. We are also very grateful to members of our families for their support during the preparation of the book.