Molecular and Cellular Biophysics

This book provides advanced undergraduate and beginning graduate students with a foundation in the basic concepts of molecular and cellular biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems.

Meyer B. Jackson is the Kenneth Cole Professor of Physiology at the University of Wisconsin Medical School. He has been teaching graduate level biophysics for nearly 25 years.
Molecular and Cellular Biophysics

Meyer B. Jackson

University of Wisconsin Medical School
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xiv</td>
</tr>
</tbody>
</table>

Chapter 1 Global transitions in proteins

1.1 Defining a global state
1.2 Equilibrium between two global states
1.3 Global transitions induced by temperature
1.4 Lysozyme unfolding
1.5 Steepness and enthalpy
1.6 Cooperativity and thermal transitions
1.7 Transitions induced by other variables
1.8 Transitions induced by voltage
1.9 The voltage sensor of voltage-gated channels
1.10 Gating current
1.11 Cooperativity and voltage-induced transitions
1.12 Compliance of a global state

Chapter 2 Molecular forces in biological structures

2.1 The Coulomb potential
2.2 Electrostatic self-energy
2.3 Image forces
2.4 Charge-dipole interactions
2.5 Induced dipoles
2.6 Cation–π interactions
2.7 Dispersion forces
2.8 Hydrophobic forces
2.9 Hydration forces
2.10 Hydrogen bonds
2.11 Steric repulsions
2.12 Bond flexing and harmonic potentials
2.13 Stabilizing forces in proteins
2.14 Protein force fields
2.15 Stabilizing forces in nucleic acids
2.16 Lipid bilayers and membrane proteins

Chapter 3 Conformations of macromolecules

3.1 \(\pi \)-Butane
3.2 Configurational partition functions and polymer chains
3.3 Statistics of random coils
3.4 Effective segment length
3.5 Nonideal polymer chains and theta solvents

© in this web service Cambridge University Press
www.cambridge.org
3. Probability distributions

3.6 Probability distributions

3.7 Loop formation

3.8 Stretching a random coil

3.9 When do molecules act like random coils?

3.10 Backbone rotations in proteins: secondary structure

3.11 The entropy of protein denaturation

3.12 The helix–coil transition

3.13 Mathematical analysis of the helix–coil transition

3.14 Results of helix–coil theory

Chapter 4 Molecular associations

4.1 Association equilibrium in solution

4.2 Cooperativity

4.2.1 Concerted binding

4.2.2 Sequential binding

4.2.3 Nearest neighbor interactions

4.3 Thermodynamics of associations

4.4 Contact formation

4.5 Statistical mechanics of association

4.6 Translational free energy

4.7 Rotational free energy

4.8 Vibrational free energy

4.9 Solvation effects

4.10 Configurational free energy

4.11 Protein association in membranes – reduction of dimensionality

4.12 Binding to membranes

Chapter 5 Allosteric interactions

5.1 The allosteric transition

5.2 The simplest case: one binding site and one allosteric transition

5.3 Binding and response

5.4 Energy balance in the one-site model

5.5 G-protein coupled receptors

5.6 Binding site interactions

5.7 The Monod–Wyman–Changeux (MWC) model

5.8 Hemoglobin

5.9 Energetics of the MWC model

5.10 Macroscopic and microscopic additivity

5.11 Phosphofructokinase

5.12 Ligand-gated channels
5.13 Subunit–subunit interactions: the
Koshland–Nemethy–Filmer (KNF) model 134
5.14 The Szabo–Karplus (SK) model 137

Chapter 6 Diffusion and Brownian motion 142
6.1 Macroscopic diffusion: Fick’s laws 142
6.2 Solving the diffusion equation 143
 6.2.1 One-dimensional diffusion from a point 144
 6.2.2 Three-dimensional diffusion from a point 146
 6.2.3 Diffusion across an interface 146
 6.2.4 Diffusion with boundary conditions 148
6.3 Diffusion at steady state 150
 6.3.1 A long pipe 151
 6.3.2 A small hole 152
 6.3.3 A porous membrane 153
6.4 Microscopic diffusion – random walks 154
6.5 Random walks and the Gaussian distribution 156
6.6 The diffusion equation from microscopic theory 159
6.7 Friction 160
6.8 Stokes’ law 162
6.9 Diffusion constants of macromolecules 163
6.10 Lateral diffusion in membranes 164

Chapter 7 Fundamental rate processes 167
7.1 Exponential relaxations 167
7.2 Activation energies 169
7.3 The reaction coordinate and detailed balance 170
7.4 Linear free energy relations 172
7.5 Voltage-dependent rate constants 175
7.6 The Marcus free energy relation 177
7.7 Eyring theory 179
7.8 Diffusion over a barrier – Kramers’ theory 180
7.9 Single-channel kinetics 183
7.10 The reaction coordinate for a global transition 186

Chapter 8 Association kinetics 194
8.1 Bimolecular association 194
8.2 Small perturbations 195
8.3 Diffusion-limited association 197
8.4 Diffusion-limited dissociation 200
8.5 Site binding 201
8.6 Protein–ligand association rates 203
 8.6.1 Evolution of speed 205
 8.6.2 Acetylcholinesterase 205
 8.6.3 Horseradish peroxidase 206
8.7 Proton transfer 207
8.8 Binding to membrane receptors 208
8.9 Reduction in dimensionality 212
8.10 Binding to DNA 214

Chapter 9 | Multi-state kinetics 216

9.1 The three-state model 216
9.2 Initial conditions 219
9.3 Separation of timescales 220
9.4 General solution to multi-state systems 221
9.5 The three-state model in matrix notation 225
9.6 Stationarity, conservation, and detailed balance 226
9.7 Single-channel kinetics: the three-state model 229
9.8 Separation of timescales in single channels: burst analysis 232
9.9 General treatment of single-channel kinetics: state counting 235
9.10 Relation between single-channel and macroscopic kinetics 236
9.11 Loss of stationarity, conservation, and detailed balance 237
9.12 Single-channel correlations: pathway counting 240
9.13 Multisubunit kinetics 242
9.14 Random walks and “stretched kinetics” 244

Chapter 10 | Enzyme catalysis 248

10.1 Basic mechanisms – serine proteases 248
10.2 Michaelis–Menten kinetics 251
10.3 Steady-state approximations 254
10.4 Pre-steady-state kinetics 256
10.5 Allosteric enzymes 257
10.6 Utilization of binding energy 258
10.7 Kramers’ rate theory and catalysis 259
10.8 Proximity and translational entropy 260
10.9 Rotational entropy 263
10.10 Reducing E': transition state complementarity 264
10.11 Friction in an enzyme–substrate complex 267
10.12 General-acid–base catalysis and Brønsted slopes 268
10.13 Acid–base catalysis in β-galactosidase 270
10.14 Catalysis in serine proteases and strong H-bonds 272
10.15 Marcus’ theory and proton transfer in carbonic anhydrase 273

Chapter 11 | Ions and counterions 276

11.1 The Poisson–Boltzmann equation and the Debye length 277
11.2 Activity coefficient of an ion 279
11.3 Ionization of proteins 283
14.3 Energy barriers and channel properties 371
14.4 Eisenman selectivity sequences 374
14.5 Forces inside an ion channel 376
14.6 Gramicidin A 378
14.7 Rate theory for multibarrier channels 380
14.8 Single-ion channels 384
14.9 Single-file channels 390
14.10 The KcsA channel 394

Chapter 15 | Cable theory 400
15.1 Current through membranes and cytoplasm 401
15.2 The cable equation 403
15.3 Steady state in a finite cable 406
15.4 Voltage steps in a finite cable 408
15.5 Current steps in a finite cable 411
15.6 Branches and equivalent cylinder representations 412
15.6.1 Steady state 413
15.6.2 Time constants 415
15.7 Cable analysis of a neuron 418
15.8 Synaptic integration in dendrites: analytical models 422
15.8.1 Impulse responses 423
15.8.2 Realistic synaptic inputs 425
15.9 Compartmental models and cable theory 428
15.10 Synaptic integration in dendrites: compartmental models 430

Chapter 16 | Action potentials 434
16.1 The action potential 434
16.2 The voltage clamp and the properties of Na⁺ and K⁺ channels 439
16.3 The Hodgkin-Huxley equations 442
16.4 Current-voltage curves and thresholds 447
16.5 Propagation 450
16.6 Myelin 453
16.7 Axon geometry and conduction 455
16.8 Channel diversity 457
16.9 Repetitive activity and the A-current 458
16.10 Oscillations 461
16.11 Dendritic integration 466

Appendix 1 | Expansions and series 470
A1.1 Taylor series 470
A1.2 The binomial expansion 471
A1.3 Geometric series 471
Appendix 2 Matrix algebra 472
 A2.1 Linear transforms 472
 A2.2 Determinants 473
 A2.3 Eigenvalues, eigenvectors, and diagonalization 474

Appendix 3 Fourier analysis 477

Appendix 4 Gaussian integrals 481

Appendix 5 Hyperbolic functions 483

Appendix 6 Polar and spherical coordinates 484

References 486
Index 504
I have tried to present the subject of biophysics from a conceptual perspective. This needs to be stated because biophysics is too often defined as a collection of physical methods that can be used to study molecular and cellular biology. This technical emphasis often fosters narrowness, and in the worst cases leads to shallowness, where sophisticated measurements are interpreted with little consideration for the physical principles that govern the special complexities of the macromolecular world of biology.

The conceptual emphasis of this book has lead to a heavy dose of theory. Theoretical analysis is essential in a conceptual approach, but I must admit that the theoretical emphasis of this book also reflects my own personal fascination with the insights that can be gained by applying physical theory to biological questions. In developing theoretical topics I have tried to be practical. I have steered toward more basic forms of mathematics wherever possible. Much of the analysis is at the level of an introductory calculus course. Where more sophisticated mathematics is involved I have tried to teach the mathematics in parallel with the development of the subject at hand. Six mathematical appendices have been added to help the reader. These may be useful guides, but are certainly not rigorous or thorough. Readers who desire a better background in mathematics will have to find appropriate texts that treat subjects such as matrices and partial differential equations. The relevant chapters in a book on mathematical methods for physics or chemistry will probably fill the gap adequately.

The level of the mathematics is not the critical issue. The most essential prerequisite here is physical chemistry. Everything has been written with the assumption that the reader has taken an undergraduate course that introduces thermodynamics, kinetics, and statistical mechanics. Some of the essentials are reviewed but my summaries cannot substitute for some intensive study focused on these topics. I also assume that the reader has had some exposure to biochemistry.

The concepts developed here are often quite general, and illustrations with specific examples are vital. Finding suitable examples has been a challenge. I have tried to avoid excessive reliance on examples from areas closer to my own research such as membranes and ion channels, but this has been hard to avoid. The concept teaches the example as often as the example teaches the concept. In order to make this book useful to an audience beyond those who share my particular research interests, I have attempted to cast a wide net and roam far and wide to present examples from the many different fields that biophysicists study.

Much of this book presents subjects that are fundamental but have not yet found their way into textbooks. Distilling such work
and rendering it in an accessible form requires difficult decisions to be made about organization and topic selection. I can only hope that this has been successful. I am painfully aware of the many interesting and important aspects of biophysics that I have not written about. However, there is already more than enough here for a one semester course for advanced undergraduates and beginning graduate students. I can only hope that studying this book will bring the many omitted topics within reach of the initiated students.

The material covered in this book varies in difficulty. Sections that are more difficult and not essential for continuity are designated with a star (•).
I owe a very special thanks to two graduate students who worked in my laboratory while I was in the final stage of writing this book. I originally asked Payne Chang and Xue Han to read a few chapters, but in the end they read every page. They have done a remarkable job of finding errors and requesting greater clarity. They both followed the Chinese adage “I respect my professor but I respect the truth more,” to the enormous benefit of this book.

I am also indebted to the following friends and colleagues for critical comments on one or more chapters: Ed Chapman, Claudio Grossmann, Enfu Hui, Matt Jones, Peter Jordan, Stuart Licht, Andrew Lokuta, Cathy Morris, Bob Pearce, Steve Redman, Kimberly Taylor, Jeff Walker, and Jim Weisshaar. A final thanks to Adam Van Wynsberghe for help with the cover picture.