Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>Notation</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 Electromagnetic concepts useful for radar applications
1.1 Review of Maxwell’s equations and potentials 1
1.2 Integral representation for scattering by a dielectric particle 6
1.3 Rayleigh scattering by a dielectric sphere 10
1.4 Scattering, bistatic, and radar cross sections 14
1.5 Absorption and extinction cross sections 18
1.6 Clausius–Mosotti equation and Maxwell-Garnet mixing formula 19
1.7 Faraday’s law and non-relativistic Doppler shift 22
1.8 Moving dielectric spheres: coherent and incoherent summation 29
1.9 Moving dielectric sphere under plane wave incidence 32
1.10 Coherent forward scattering by a slab of dielectric spheres 38
 Notes 43

2 Scattering matrix
2.1 The forward scatter and back scatter alignment conventions 45
2.2 Reciprocity theorem 50
2.3 Scattering matrix for sphere and spheroid in the Rayleigh–Gans approximation 52
2.4 Mie solution 75
2.5 Mie coefficients in powers of k_0a: low frequency approximation 83
2.6 Numerical scattering methods for non-spherical particles 85
 Notes 88

3 Wave, antenna, and radar polarization
3.1 Polarization state of a plane wave 89

© Cambridge University Press www.cambridge.org
Contents

3.2 Basics of antenna radiation and reception 98
3.3 Dual-polarized antennas: linear polarization basis 104
3.4 Radar range equation for a single particle: linear polarization basis 107
3.5 Change of polarization basis: linear to circular basis 108
3.6 Radar range equation: circular basis 113
3.7 Bilinear form of the voltage equation 117
3.8 Polarization synthesis and characteristic polarizations 119
3.9 Partially polarized waves: coherency matrix and Stokes’ vector 126
3.10 Ensemble-averaged Mueller matrix 129
3.11 Time-averaged Mueller and covariance matrices 133
3.12 Some implications of symmetry in scattering 138
3.13 Covariance matrix in circular basis 142
3.14 Relation between linear and circular radar observables 151
Notes 158

4 Dual-polarized wave propagation in precipitation media 160
4.1 Coherent wave propagation 161
4.2 Oguchi’s solution 171
4.3 Radar range equation with transmission matrix: linear polarization basis 176
4.4 Radar range equation with transmission matrix: circular polarization basis 184
4.5 Transmission-modified covariance matrix 192
4.6 Relation between linear and circular radar observables in the presence of propagation effects 199
4.7 Measurements in a “hybrid” basis 204
Notes 209

5 Doppler radar signal theory and spectral estimation 211
5.1 Review of signals and systems 211
5.2 Received signal from precipitation 217
5.3 Mean power of the received signal 222
5.4 Coherency matrix measurements 233
5.5 Autocorrelation of the received signal 235
5.6 Spaced-time, spaced-frequency coherency function 243
5.7 Sampling the received signal 246
5.8 Noise in radar systems 257
5.9 Statistical properties of the received signal 262
5.10 Estimation of mean power 271
5.11 Doppler spectrum (or power spectral density) and estimate of mean velocity 274
Contents

5.12 Example of received signal statistics and spectral estimation 287

Notes 293

6 Dual-polarized radar systems and signal processing algorithms 294

6.1 General system aspects 294
6.2 Antenna performance characteristics 317
6.3 Radar calibration 332
6.4 Estimation of the covariance matrix 342
6.5 Variance of the estimates of the covariance matrix elements 353
6.6 Estimation of specific differential phase (K_{dp}) 368

Notes 376

7 The polarimetric basis for characterizing precipitation 378

7.1 Rain 379
7.2 Convective precipitation 426
7.3 Stratiform precipitation 473
7.4 The estimation of attenuation and differential attenuation in rain using Φ_{dp} 490
7.5 Hydrometeor classification 513

Notes 532

8 Radar rainfall estimation 534

8.1 Physically based parametric rain rate estimation algorithms 534
8.2 Physically based parametric rainwater content algorithms 544
8.3 Error structure and practical issues related to rain rate algorithms using Z_{θ}, Z_{dr}, and K_{dp} 545
8.4 Statistical procedures for rainfall estimation 554
8.5 Neural-network-based radar estimation of rainfall 559
8.6 Some general comments on radar rainfall estimation 567

Notes 569

Appendices 570

1 Review of electrostatics 570
2 Review of vector spherical harmonics and multipole expansion of the electromagnetic field 585
3 T-matrix method 591
<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Solution for the transmission matrix</td>
<td>595</td>
</tr>
<tr>
<td>5</td>
<td>Formulas for variance computation of autocorrelation functions, their magnitude, and phase, and for estimators in the periodic block pulsing scheme</td>
<td>599</td>
</tr>
</tbody>
</table>

References: 607
Index: 629