
1 Electromagnetic concepts useful for radar
applications

The scattering of electromagnetic waves by precipitation particles and their propagation
through precipitation media are of fundamental importance in understanding the signal
returns from dual-polarized, Doppler weather radars. In this chapter, a number of
useful concepts are introduced from first principles for the benefit of those readers who
have not had prior exposure to such material. Starting with Maxwell’s equations, an
integral representation for scattering by a dielectric particle is derived, which leads into
Rayleigh scattering by spheres. The Maxwell-Garnet(MG) mixing formula is discussed
from an electrostatic perspective (a review of electrostatics is provided in Appendix 1).
Faraday’s law is used in a simple example to explicitly show the origin of the bistatic
Doppler frequency shift. The important concepts of coherent and incoherent addition
of waves are illustrated for two- and N -particle cases. The time-correlated bistatic
scattering cross section of a single moving sphere is defined, which naturally leads
to Doppler spectrum. The transmitting and receiving aspects of a simple Doppler
radar system are then explained. This chapter ends with coherent wave propagation
through a slab of spherical particles, the concept of an effective propagation constant of
precipitation media, and the definition of specific attenuation.

1.1 Review of Maxwell’s equations and potentials

Maxwell’s time-dependent equations1 governing the electric ( �E) and magnetic ( �B)
vectors within a material can be written in terms of permittivity of free space (ε0),
permeability of free space (µ0), and the volume density of polarization ( �P). It is
assumed here that within the material under consideration, the volume density of free
charge is zero, the conductivity is zero (no Ohmic currents), and the volume density of
magnetization is zero. Then, �E and �B within the interior of the material satisfy,

∇ × �E = −∂
�B
∂t

; ε0∇· �E = −∇· �P (1.1a)

1

µ0

∇ × �B = ∂ �P
∂t

+ ε0

∂ �E
∂t

; ∇· �B = 0 (1.1b)

The term ∂ �P/∂t is identified as the polarization current, which can be thought of as
being maintained by external sources, while ε0∂ �E/∂t is the free space displacement

1
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2 Electromagnetic concepts useful for radar applications

Fig. 1.1. Boundary between a polarized material (Region 1) and free space (Region 2). The unit
normals are directed “outward” with respect to the corresponding regions.

current. Fields �E and �B are the macroscopic fields in the material, not the “microscopic”
or “local” fields. The boundary conditions on the interface between the material and the
free space [see Fig. 1.1 and note the directions of the unit normal vectors (n̂1,2)] are
given as,

n̂1 × �E1 + n̂2 × �E2 = 0; ε0(n̂1· �E1 + n̂2· �E2) = −n̂1· �P1 (1.2a)

1

µ0

(n̂1 × �B1 + n̂2 × �B2) = 0; n̂1· �B1 + n̂2· �B2 = 0 (1.2b)

The tangential components of the electric and magnetic fields are continuous across the
interface; the normal component of the magnetic vector is continuous; and the normal
component of the electric vector is discontinuous by an amount equal to −n̂1· �P1/ε0

or −ηb/ε0, where ηb is the surface density of the bound charge. If the interface is
between two materials with different �P1 and �P2 on either side, then ε0(n̂1· �E1+n̂2· �E2) =
−(n̂1· �P1 + n̂2· �P2). Note that in Fig. 1.1, �P2 is taken as zero in free space.

When the time variation of the external sources (e.g. radiating antenna) that maintain
the polarization current within the material (or particle) is in sinusoidal steady state at
a fixed angular frequency (ω), then Maxwell’s equations (1.1) can be transformed by
defining,

�E(�r , t) = Re
[ �Ec(�r)e jωt ] (1.3a)

�B(�r , t) = Re
[ �Bc(�r)e jωt ] (1.3b)
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3 1.1 Review of Maxwell’s equations and potentials

�P(�r , t) = Re
[ �Pc(�r)e jωt] (1.3c)

where �Ec(�r), �Bc(�r), and �Pc(�r) are vector-phasors or complex vectors. Substituting
(1.3) into (1.1) yields,

∇ × �Ec = − jω �Bc; ε0∇· �Ec = −∇· �Pc (1.4a)
1

µ0

∇ × �Bc = jω �Pc + jωε0
�Ec; ∇· �Bc = 0 (1.4b)

The boundary conditions in (1.2) are valid without any change by replacing the real,
instantaneous vectors by complex vectors. Note that,

�Ec(�r) = �Ec
real + j �Ec

im (1.5a)

�E(�r , t) = Re
[ �Ec(�r)e jωt ] (1.5b)

Henceforth, the superscript c will be dropped as only the sinusoidal steady state will
be considered. For linear materials, a complex relative permittivity is defined (εr =
ε′r − jε′′r ) as discussed in Appendix 1, where �P = ε0(εr − 1) �E within the material.

1.1.1 Vector Helmholtz equation

The vector Helmholtz equation for �E is derived by taking the curl of �E in (1.4a),

∇ × ∇ × �E = − jω∇ × �B (1.6a)

= − jωµ0

(
jω �P + jωε0

�E)
(1.6b)

= ω2µ0
�P + ω2µ0ε0

�E (1.6c)

= ω2µ0
�P + k2

0
�E (1.6d)

Thus, the inhomogeneous vector Helmholtz equation for �E is,

∇ × ∇ × �E − k2
0

�E = ω2µ0
�P (1.7a)

and a similar equation for �B is,

∇ × ∇ × �B − k2
0

�B = jωµ0∇ × �P (1.7b)

where k0 = ω
√
ε0µ0 is the wave number of free space. Here, �E and �B are the total

fields within the material, and �P is maintained by external sources. The volume density
of polarization or the polarization current, in this context, can be thought of as induced
“sources” in (1.7a, b). If the linear relation �P = ε0(εr −1) �E is used within the material,
then �E and �B satisfy the more familiar homogeneous vector Helmholtz equations,

∇ × ∇ × �E − k2 �E = 0 (1.8a)

∇ × ∇ × �B − k2 �B = 0 (1.8b)

where k = ω
√
ε0εrµ0 = k0

√
εr is the complex wave number of the material.
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4 Electromagnetic concepts useful for radar applications

1.1.2 Scalar, vector and electric Hertz potentials

The ( �E, �B) fields can be expressed in terms of simpler potential functions (φ, �A), where
�B = ∇ × �A and �E = −∇φ − jω �A. These follow from the two Maxwell equations,
∇· �B = 0 and ∇ × �E + jω �B = 0. The function φ is termed the electric scalar potential,
and reduces to the electrostatic potential when ω = 0. The function �A is termed the
magnetic vector potential. These two potentials must also satisfy Maxwell’s remaining
two equations,

ε0∇· �E = −∇· �P (1.9a)

1

µ0

∇ × �B = jω �P + jωε0
�E (1.9b)

Substituting for �B and �E in terms of the potentials φ and �A gives,

∇2φ + jω∇· �A = 1

ε0

∇· �P (1.10a)

∇ × ∇ × �A = jωµ0
�P − jωµ0ε0∇φ + k2

0
�A (1.10b)

Since ∇ × ∇ × �A = ∇(∇· �A)− ∇2 �A,

∇(∇· �A)− ∇2 �A = jωµ0
�P − jωε0µ0∇φ + k2

0
�A (1.11)

The magnetic vector potential is not unique as yet, since only its curl is defined as equal
to �B. Its divergence can be assigned any convenient value and, in particular, if the
Lorentz gauge is used, i.e. ∇· �A = − jωε0µ0φ, then (1.10a, b) become,

(∇2 + k2
0)φ = 1

ε0

∇· �P (1.12a)

(∇2 + k2
0)

�A = − jωµ0
�P (1.12b)

The above are the (inhomogeneous) Helmholtz equations for the potentials (φ, �A) from
which �E and �B are derived. In practice, �E and �B can be derived from �A alone using the
Lorentz gauge relation,

�B = ∇ × �A (1.13a)

�E = −∇φ − jω �A (1.13b)

= − j

ωε0µ0

∇(∇· �A)− jω �A (1.13c)

It is convenient to define the electric Hertz vector �� = �A/ jωµ0ε0, so that �� satisfies,

(∇2 + k2
0)

�� = − �P
ε0

(1.14)
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5 1.1 Review of Maxwell’s equations and potentials

Fig. 1.2. Continuous volume density of polarization �P(�r ′) is defined within the volume τ of
polarized material.

and ( �E, �B) are derived from �� as,

�E = ∇(∇· ��)+ k2
0
�� (1.15a)

= ∇ × ∇ × ��+ (∇2 + k2
0)

�� (1.15b)

= ∇ × ∇ × ��−
�P
ε0

(1.15c)

�B = jωµ0ε0∇ × �� (1.15d)

Referring to Fig. 1.2, the particular integral (PI) solution to (1.14) is,

��(�r) = 1

4πε0

∫
τ

�P(�r ′)
e− jk0|�r−�r ′|

|�r − �r ′| dτ ′ (1.16)

where,

G0(�r/�r ′) = 1

4πε0

e− jk0|�r−�r ′|

|�r − �r ′| (1.17)

is the free space Green function for the scalar Helmholtz equation. Note that �� satisfies
no boundary condition (because it is a PI solution) except the radiation condition on a
spherical surface at infinity. This radiation condition implies that �� at large distances
(R) must be of the form of outward propagating spherical waves, exp(− jk0 R)/R (for
exp( jωt) time dependence), where R = |�r − �r ′|. One can consider (1.16) as analogous
to the electrostatic PI solution given in (A1.5) for the electrostatic potential, where in
both cases �P is maintained by external sources as yet unspecified. When the observation
point �r is outside the volume (τ ) of polarized material and in empty space (see Fig. 1.2),
then the electric field �E(�r) from (1.15c) is given as ∇ × ∇ × ��(�r), since �P is zero in
free space.
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6 Electromagnetic concepts useful for radar applications

1.2 Integral representation for scattering by a dielectric particle

Now consider the case of a dielectric particle placed in a known incident field ( �Ei ) as
illustrated in Fig. 1.3a. As discussed in Appendix 1, �Ei is perturbed by the dielectric
particle. What was termed the perturbation field ( �E p), in Appendix 1, in an electrostatic
context, is now conventionally termed the scattered field ( �Es). Figure 1.3b illustrates
that the “source” for the scattered electric field is the unknown volume density of
polarization ( �P) within the particle. Inside the particle, �Es satisfies ∇×∇× �Es−k2

0
�Es =

ω2µ0
�P , and thus �Es can be derived from the electric Hertz vector ��s . Since ��s satisfies

(∇2 + k2
0)

��s = − �P/ε0 inside the particle, the principal integral solution is given by
(1.16), and �Es outside the particle is given as,

�Es(�r) = ∇ × ∇ × 1

4πε0

∫
τ

�P(�r ′)e− jk0|�r−�r ′|

|�r − �r ′| dτ ′ (1.18a)

Using the fact that �P(�r ′) = ε0(εr − 1) �E in
T (�r ′), where �E in

T is the total electric field inside
the particle, an integral representation for the scattered electric field outside the particle,
�Es(�r), can be obtained as a volume integral,

�Es(�r) = ∇ × ∇ × 1

4π

∫
τ

(εr − 1) �E in
T (�r ′)

e− jk0 R

R
dτ ′ (1.18b)

where R = |�r − �r ′|, and may be compared with the electrostatic representation for �E p

in (A1.14b). For homogeneous particles, the term (εr − 1) can be brought outside the
integral.

When r � r ′, and recalling that �r ′ locates the differential volume element (dτ ′)
inside the particle, the far-field integral representation for �Es(�r) can be derived as
follows. First, note that the dual curl operator [∇ ×∇ × (· · ·)] operates on �r ≡ (x, y, z)
only and can be taken inside the integral in (1.18b), Thus,

∇ ×
[

�E in
T (�r ′)

e− jk0 R

R

]
= ∇

(−e jk0 R

R

)
× �E in

T (�r ′) (1.19a)

=
[

1

R
∇(e− jk0 R)+ e− jk0 R∇

(
1

R

)]
× �E in

T (�r ′) (1.19b)

=
[

− jk0e− jk0 R∇(R)
R

+ e− jk0 R(−R̂)

R2

]
× �E in

T (�r ′) (1.19c)

= − jk0(e− jk0 R)R̂

R

(
1 + 1

jk0 R

)
× �E in

T (�r ′) (1.19d)

Since r � r ′ and R = |�r − �r ′|, the term |1/jk0 R| may be neglected, in comparison to
unity in (1.19d). Also, the term (1/R) can be approximated as (1/r), while R̂ is parallel
to r̂ (see Fig. 1.4). Hence, (1.19d) reduces to,

∇ ×
[

�E in
T (�r ′)

e− jk0 R

R

]
≈ (− jk0)

r
e− jk0 Rr̂ × �E in

T (�r ′) (1.20)
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7 1.2 Integral representation for scattering by a dielectric particle

Fig. 1.3. (a) Dielectric particle in the presence of an incident electric field �Ei . The particle gets
polarized �P and causes a scattered field component �Es outside the particle. The total field is �E in

T
inside the particle. (b) Illustration showing that the “source” of the scattered field �Es is the
volume density of polarization �P within the particle.

In a similar manner,

∇ × ∇ ×
[

�E in
T (�r ′)

e− jk0 R

R

]
≈ (− jk0)(− jk0)

r
e− jk0 Rr̂ × r̂ × �E in

T (�r ′) (1.21a)

= −k2
0

r
e− jk0 Rr̂ × r̂ × �E in

T (�r ′) (1.21b)

Substituting (1.21b) into (1.18b),

�Es(�r) = −k2
0(εr − 1)

4π

(
1

r

) ∫
τ

e− jk0 Rr̂ × r̂ × �E in
t (�r ′) dτ ′ (1.22)

The final far-field approximation is in the exponential term exp(− jk0 R) = cos(k0 R)−
j sin(k0 R), where R ≈ r − �r ′·r̂ (see Fig. 1.4). It is not permissible to approximate
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8 Electromagnetic concepts useful for radar applications

Fig. 1.4. Approximation for R in the far-field, R ≈ r − �r ′·r̂ .

R ≈ r in the exponential term since θ = k0 R ≈ k0r − k0�r ′·r̂ , which lies between 0
and 2π . Since k0 is the wave number of free space (k0 = ω/c = 2π/λ, where λ is
the wavelength and c the velocity of light in free space, respectively), the correction
term k0�r ′·r̂ = �r ′·r̂(2π/λ) may become significant if the maximum extent of �r ′ is even
a small fraction of λ. Since �r ′ is a variable of integration and covers all differential
volume elements within the particle, the maximum extent of �r ′ is of the same order as
the maximum dimension of the particle. With this final approximation, (1.22) reduces
to,

�Es(�r) = k2
0

4π
(εr − 1)

e− jk0r

r

∫
τ

[
�E in

T (�r ′)− r̂(r̂ · �E in
T )

]
e jk0�r ′·r̂ dτ ′ (1.23)

where the vector identity �a × �b × �c = �b(�a·�c)− �c(�a·�b), with �a ≡ r̂ , �b ≡ r̂ , and �c ≡ �E in
T ,

is used. The far-field vector scattering amplitude ( �f ) is defined as,

�Es = �f e− jk0r

r
(1.24a)

�f = k2
0(εr − 1)

4π

∫
τ

[
�E in

T (�r ′)− r̂(r̂ · �E in
T )

]
e jk0�r ′·r̂ dτ ′ (1.24b)

where �f ≡ �f (θ, φ), the spherical coordinates (θ, φ) referring to the direction of �r (see
Fig. 1.4), i.e. to the scattering direction. From (1.15d) the scattered magnetic vector �Bs

is,

�Bs = jωε0µ0∇ × �� (1.25a)

= jωε0µ0∇ × 1

4π

∫
τ

(εr − 1) �E in
T (�r ′)e− jk0 R

R
dτ ′ (1.25b)
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9 1.2 Integral representation for scattering by a dielectric particle

Using the far-field approximation,

�Hs =
�Bs

µ0

= jωε0(− jk0)(εr − 1)
e− jk0r

4πr

∫
τ

r̂ × �E in
T (�r ′)e jk0�r ′·r̂ dτ ′ (1.26)

where �H s is the far-field magnetic intensity vector. Using k0 = ω/c, c2 = 1/ε0µ0, and
defining the impedance of free space as Z0 = √

µ0/ε0, the far-field relation between �Es

and �Hs reduces to the simple form,

�Es = Z0( �Hs × r̂); �Hs = Z−1
0 (r̂ × �Es) (1.27)

From both (1.23) and (1.26) it is easy to see that r̂ · �Es = r̂ · �Hs = 0; thus the
radial component of the far-field electric and magnetic vectors is zero. Since �Es =
�f (θ, φ) exp(− jk0r)/r , it follows that,

�Hs = 1

Z0

[
r̂ × �f (θ, φ)

] e− jk0r

r
(1.28)

∣∣∣∣∣
�Es

�Hs

∣∣∣∣∣ = Z0 (1.29)

Recall that �Es and �Hs are complex vectors or vector-phasors, and so is the vector
scattering amplitude �f (θ, φ). The function r F = | �f (θ, φ)| exp(− jk0r) satisfies the
spherical wave equation,

∂2

∂r2
(r F)+ k2

0(r F) = 0 (1.30)

as can be verified by direct substitution. The function F(r, θ), thus describes spherical
waves that expand radially with constant velocity of light. The equiphase surfaces are
given by k0r ≡ constant; these are spherical and they are separated by the constant
distance λ = 2π/k0, where λ is the wavelength.

A further simplification of the far-field structure of the scattered wave follows if
interest is confined to a relatively small region of space surrounding the point P0 in
Fig. 1.5, whose radial extent is much smaller than r0 and whose solid angle subtended
at the origin is also small. Within this small volume of space, the function | �f (θ, φ)|r−1

can be considered constant and equal to | �f (θ0, φ0)|r−1
0 . Consider another point P within

this small volume, as also shown in Fig. 1.5. It is clear that the direction to P as
described by ŝ will be the same as r̂0. However, the phase of the spherical wave at P is
approximated as exp(− jk0s), while its amplitude is approximated as a constant equal to
K ≡ | �f (θ0, φ0)|r−1

0 . Thus within the small volume, the scattered wave characteristics
can be written as F(s) ≈ K exp(− jk0s), which is the so-called “local” plane wave
approximation, since the surfaces of the constant phase are given by k0s = constant,
which are plane surfaces orthogonal to ŝ. The function F(s) satisfies the plane wave
equation,

d2 F

ds2
+ k2

0 F = 0 (1.31)
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10 Electromagnetic concepts useful for radar applications

Fig. 1.5. Local plane wave approximation within a small volume centered at P0.

as can be verified by direct substitution. Thus (1.30) which is the spherical wave
equation, is approximated by (1.31), which is the local plane wave equation (King and
Prasad 1986).

1.3 Rayleigh scattering by a dielectric sphere

The integral representation for the far-field vector scattering amplitude, �f (θ, φ), given
in (1.24b) is fundamental, with the basic unknown being the total electric field in
the interior of the dielectric particle. When this internal field is approximated by the
corresponding electrostatic solution it is called Rayleigh scattering. In Appendix 1, the
case of a dielectric sphere in an uniform incident field is described and extensions are
made to the case of prolate/oblate spheroids. For arbitrary-shaped dielectric particles,
numerical methods must be used: a surface integral equation technique is described in
Van Bladel (1985; Section 3.9) with numerical results given, for example, in Herrick
and Senior (1977).

Referring to Fig. 1.6a, the uniform incident field �Ei = ẑE0 can be used as an
electrostatic approximation for an ideal plane wave propagating along the positive
Y -axis with amplitude E0 and linearly polarized along the ẑ-direction, of the form
�Ei = ẑE0 exp(− jk0 y) (wave polarization will be treated in detail in Chapter 3). As
discussed under the electroquasistatic approximation in Appendix 1, this is valid when
the sphere diameter is very small compared with the wavelength λ. Substituting from
Appendix 1 (A1.24), the electrostatic solution �E in

T = ẑ3E0/(εr + 2) = �Ei (3/εr + 2)
in (1.24b), and noting that �E in

T is constant inside the sphere and that exp( jk0�r ′·r̂) ≈ 1,
since the maximum extent of �r ′ is the sphere radius, results in,

�f (θ, φ) = k2
0

4π

(εr − 1)

(εr + 2)
3V

[
�Ei − r̂(r̂ · �Ei )

]
(1.32a)
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