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1
Hybrid Estimation

1.1 Introduction

Common problems in design require that an engineer devise a control or decision
algorithm that converts measurements of system and environmental variables into
signals that aid in system regulation. For example, a control node converts sensor
outputs into an actuating signal that moves the system toward the desired operating
point and keeps it there. At this foundational level, the engineer must formulate
a mapping from the system observables into an action or report; for example, a
feedback regulator converts the measured outputs of the system to be controlled
(theplant) into an input that stabilizes the system.

Design is made difficult by disturbances internal to the system and by noise at
its output. For example, there may be no sensors that measure those plant variables
most useful for regulation, or, if measured, the variables may be masked by noise
in the sensor-to-regulator link. Lacking omniscience, an engineer must process the
available measurements to produce a good approximation to relevant but “hidden”
variables. And this inference must be done on-line. The processing algorithm must
not only be adapted to the incoming data stream, it must be of a form that can be
implemented: An implementable estimation algorithm is an explicit mapping of
the sensor output process (themeasurements) into a (nearly) concurrent estimate
of the required variables. In the applications studied here, the need for contempo-
raneous response limits consideration to finite-dimensional recursive algorithms;
new observations are integrated into an estimate in an accretive manner.

Analytical design in estimation and control begins with a formal mathematical
description of the system to be controlled (theplant model). The model delineates
the response of the plant to endogenous actuating signals as well as representing
the influence of exogenous disturbances common to the application. The system
designer selects a control policy or a state estimation algorithm based in large part
upon the behaviors predicted by the model. The practicality of analytic procedures is

1
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linked closely to the realism of the plant model. However, realism must be tempered
by the need to have a model that is simultaneously flexible and tractable.

One useful paradigm phrases the plant model in terms of a set of nonlinear
stochastic differential equations. Let us start with a probability space(Ä,F,P) and
a time interval of interest, [0,T]. On this space there is a right-continuous filtration
{Ft ; 0≤ t ≤ T} and right-continuous,Ft -adapted random processes,{8t }, {wt },
and{nt }. Subject to initial conditionsχ0 andg0, the plant model is written:

plant model

dχt = f(χt , υt ,8t) dt + g(χt , υt ,8t) dwt , (1.1)

dgt = r(χt , υt ,8t) dt + s(χt , υt ,8t) dnt , (1.2)

where{υt } is ans-dimensional actuating process (theplant input), {gt } is an r -
dimensional observation process (theplant output), and{χt } is ann-dimensional
internal process (theplant state). Equation (1.1) describes the temporal evolution
of the internal variables within the plant, and (1.2) describes the sensor outputs
available for estimation and/or control.

This plant model is more complicated than that encountered in introductory
studies of feedback control. In applications, even when the actuating process is
specified, the realizations of the state and output paths are unpredictable – there
are many effects not well captured in a deterministic model. Chance influences in
the plant and sensor are represented by the stochastic processes in (1.1) and (1.2).
Various accretive effects are represented by{wt } and{nt }; for example,{wt } could
describe the high frequency modes ignored in a low-dimensional plant model, and
{nt } could describe noise at the sensor output. Theenvironmental process, {8t },
denotes external conditions of a more global sort that affect plant operation. The
value of{8t }might indicate the operational status of a subelement within the plant,
external conditions that influence the plant dynamics (e.g., temperature), the level
of loads placed upon the system by linked elements, etc. In contrast to{wt } and
{nt }, which tend to be aggregations of small increments,8t may symbolize tem-
porally distinct events. (Friedland called8t themetastatewhen used in the context
of adaptive control; see [Fri96, Chapter 10].) All of these disturbance processes are
viewed by the designer as exogenous.

In both estimation and the control, the output signal,{gt }, is processed to create
causal estimates of important system variables. Afilter provides estimates of the
current values of both the plant state vector and the environmental process. A
predictor estimates future values of the same variables. Often, the environmental
process has a character fundamentally different from the plant state. The value of8t
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may be a symbolic variable (e.g.,8t ∈ {normal operation, degraded operation}).
In this event, the average value of8t has no meaning. Rather, the probability
distribution of8t is required to properly assess the status of the plant. Denote the
filtration generated by{gt } by {Gt }. If mean square error is used as a performance
index, the estimation problem can be posed as follows:

Find an explicit processing algorithm to generate (or approximate) the mean plant
state ˆχt = E[χt |Gt ] and theGt -probability distribution of8t .

There are applications in which even this will not suffice and more comprehensive
statistical properties of the plant processes are required.

Unfortunately, even when formal descriptions of the exogenous processes are
integrated with (1.1) and (1.2), an elementary solution to this estimation problem
does not currently exist. There is, however, one special case in which astounding
success has been achieved. So much so that the solution thus derived is used in
circumstances far removed from those in which it was developed. Specifically,
suppose that the system has “smooth” nonlinearities, that the plant noise,{wt }, is a
Brownian motion, and that the environmental process,{8t }, is constant with known
value8c. Associated with8c there is a nominal operating condition, both in the
state and in the actuating signal labeled(χn, υn). Frequently(χn, υn) is a condition
of plant stasis:f (χn, υn,8c) = 0. The operating condition (orregime) is known
by different names: in the process control industry,(χn, υn) is referred to as the
set point or the operating point; in aircraft flight control,(χn, υn) is referred to as
the trim condition; in other applications,(χn, υn) is simply the reference point. We
will use these terms interchangeably and note in this context that8t simply points
to the operating mode or regime with its value having no intrinsic meaning.

For a particular regime, there is a local description of the plant phrased in terms of
a set of perturbation variables. These are defined as the (usually small) deviations
in state and excitation from the set point:xt = χt − χn; ut = υt − υn. Using
orthodox methods and neglecting higher order terms, the perturbation processes
are commonly represented by a linear stochastic differential equation with initial
condition taken to be Gaussian:x0 is N(x̂0, Pxx(0)), and

dxt = (Axt + But) dt + C dwt , (1.3)

where{wt } is a Brownian motion with intensityW(d〈w,w〉t = Wdt). Call{xt } the
base-state processto distinguish it from the plant state process,{χt }; call {ut } the
regulation signalto distinguish it from the plant input,{υt }. Equation (1.3) relates
the base-state to the inputs{ut } (endogenous) and{wt } (exogenous). The base-state
excitation is a Brownian motion with intensityCWC′ = Rχ . Of course, if the plant
is linear over a large region of the state space, (1.3) is valid without consideration
of the set point. In such applications, it is understood thatχn andυn are both zero.
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The set point is known(P[8t ≡ 8c] = 1) and need not be estimated, but
the plant state is frequently not known and must be inferred from sensor outputs.
Suppose a sensor provides a noisy but linear plant state measurement,

plant state measurement: time-continuous

dyt = Hχt dt + dnt , (1.4)

where{nt } is a Brownian motion independent of{wt }, with intensityRx > 0(d〈n, n〉t
= Rx dt), and y0 = 0. By subtracting the contribution of the set point from
the output, (1.4) can be written as a noisy, linear measurement of the base-state:
dyt − Hχndt = Hxt dt + dnt . The innovation incrementdνt = dyt − dŷt can be
written Hx̃t dt+ dnt , wherex̃t = xt − x̂t . When there is only one sensor,gt ≡ yt .
To differentiate this case from others that follow, denote the filtration generated
by {yt } by {Yt } (= Gt in this case), where a circumflex may be used to denote
Yt -expectation if no confusion will result. Equations (1.3) and (1.4) will be called a
linear–Gauss–Markov(LGM) model even whenx0 is not Gaussian. Although the
observation is unconventional, the regime offset is known and is accommodated
in a direct fashion. The base-state estimator is known for the LGM problem: the
Kalman filter. The Kalman filter generates{x̂t } using a simple recursive algorithm.
The plant state estimator is ˆχt = χn + x̂t .

In the systems we will study,{8t } is not nearly so obliging. Instead of a single op-
erating point,{8t }may move about in its range space in response to the macroevents
that influence the plant. The temporal structure of the regime process has a funda-
mental impact on system analysis. If, for example,{8t } has sample paths that are
well described by a diffusion process, then{8t } can be integrated into (1.1) as an
additional plant state. This is an attractive option when the time constants of{8t }
are comparable with those of the plant, though this inclusion compounds the plant
nonlinearity.

In other applications,{8t } has a distinguishing feature that precludes orthodox
state augmentation. Suppose the plant hasSpossible operating regimes, and at any
particular time,8t takes on a value selected from a set of sizeS:8t ∈ {8i ; i ∈ S}.
The plant now hasS possible reference points (or set points, etc.), and these are
identified with theS possible values of{8t }; that is, there areS vector pairs,
{(χi , υi ); i ∈ S}, which designate theS relevant stasis conditions for the plant. For
example, thekth nominal operating point for the plant is(χk, υk), and if8t = 8k

the plant input and state should be near(χk, υk).
For simplicity, array the nominal states (respectively nominal actuating signals)

as ann × S matrix χ (respectively ans×S matrixυ): χ = [χi ] (respectively
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υ = [υi ]). During operation, the system will operate in one regime for a time
(8t = 8i for t ∈ [a, b)) and then suddenly shift (8b = 8 j ) to another in response
to an external event or change in the surrounding environment. In most applications,
the discontinuous sample paths of{8t } are an approximation to the continuous
though abrupt modal transitions that actually occur. Nevertheless, the representation
of {8t } with a process of piecewise constant paths is a useful abstraction when the
interval over which the modal transition takes place is short as compared to the
important time constants of the plant.

Since the environmental process has a finite state space,{8t } can be represented
using a more illuminating notation. Letφt be a pointer to the current regime: The
state space ofφt consists of theScanonical unit vectors inRS (φt ∈ {e1, . . . ,eS}).
The component inφt with value one marks the current mode of operation: If
8t = 8k thenφt = ek. The {φt } process is called themodal-state processto
differentiate it from the base-state process. The base-state variables are deviations
from the current set point:xt = χt −χφt ; ut = υt −υφt . The comprehensive state
of the system is the composition of the base- and modal-states: Thezygostateis the
pair (xt , φt). Sinceφt is an indicator vector, the expectation of the modal-state is
actually the conditional probability vector̂φt = [P{φi = ei |Gt }].

Control in a multiregime environment presents some subtle challenges. When
the regime is known and constant (e.g.,φt ≡ ei ), the actuating signal has a natural
decomposition (υt = ut + υφt ) into a feedforward component associated with the
set point (υei = υi ) and a feedback component (ut ) that maintains the plant state
near the set point (χt ≈χi ). When the modal-state is neither known nor measured,
this implementation is not possible because proper feedforward control cannot be
generated. In applications, a variety of replacements for{υφt } have been proposed.
We will not explore issues of feedforward control in any depth here. We will simply
employ{υφ̂t } as the “feedforward” component of the actuating signal: Ideal set
point actuation will be replaced with its expectation. Note, however, that a failure
to generate the proper feedforward actuating signal has an influence that must be
included in the base-state dynamics.

A comprehensive plant model requires a representation of evolution, both in-
tramodal and intermodal. Consider the former first. During an extended (known)
modal sojourn, proper control will place and maintain the plant state vector near the
correct set point. The natural plant model in this circumstance would be that local
model, selected from a family of regime-specific, linear models, associated with
the present mode of operation. The modal-state is a pointer, and the intrasojourn
model can be written:

dxt =
∑

i

((Ai xt + Bi (ut + υ(φ̂t − ei ))) dt + Ci dwt)φi , (1.5)



P1: FCU/FIO P2: FCW/FGA P3: FDD/FGA QC:

CB195/Sworder chap-01 May 31, 1999 12:33

6 Hybrid Estimation

where{Ai , Bi ,Ci ; i ∈ S} are determined from (1.1) in precisely the way (1.3) was
in the unimodal (or unimorphic†) case.

Suppose the plant is in thei th mode (φt = ei ) and the modal estimate is a good
one (φ̂t ≈ ei ). The base-state dynamic equation is thei th selection from the family of
models:(Ai xt+Bi ut) dt+Ci dwt . The exogenous excitation is a Brownian motion
with intensityRχ(i ) = Ci WC′i . There is an atypical term in (1.5) that is connected
with failure to implement the proper feedforward excitation (−Biυφ̃tφi dt). When
the estimate ofφt is good, this last term is negligible, and the intramodal dynamics
are LGM.

The intramodal representation is but a part of the model of plant evolution. When
the regime changes, many things can happen to the plant state. There will be no
attempt to be exhaustive in this list, but we will encounter situations in which
the plant state translates, rotates, and/or is scaled. More specifically, suppose{8t }
makes the transitionei 7→ el at timet . Then{χt } may experience:

Translation: 1χt = ρ(i, l ); i 6= l .
Rotation and/or scaling:1χt = M(i, l )χt−; i 6= l ,
where1χt = χt − χt−.

When the mode changes, the plant state may be transformed in a way that cre-
ates a path discontinuity. This abrupt change in plant state is an approximation
in most cases. But, if the interval over which a change takes place is small, a
discontinuous path model may provide a far simpler representation of the state
variation than would a continuous path model created from an intricate diffusion
process. To fill out the list of transformation matrices, letρ(i, i ) = 0,M(i, i ) =
0; i ∈S. The indicator vector of the discontinuity eventei 7→ el at time t can
be written asφi e′l1φt . The plant state discontinuity can be written explicitly
as

1χt =
∑
i,l

(M(i, l )χt− + ρ(i, l ))φi e′l1φt .

Discontinuities in{χt } are reflected directly in{xt }, but there is an additional
source of base-state discontinuity. When the mode changesei 7→ el , the base-state
reference level changes fromχi to χl . Even if the plant state were continuous, the
base-state would experience a discontinuity:

1xt = −χ1φt .

These intermodal transition conditions can be combined to yield the base-state

† We say a system may have one or several modes or, equivalently, forms. Hence a single-mode plant
is called unimodal (or unimorphic) to distinguish it from a polymodal (polymorphic) system.
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discontinuity model:

1xt =
∑
i,l

(M(i, l )xt− + (χi − χl )+ M(i, l )χi + ρ(i, l ))φi e′l1φt . (1.6)

Now combine the intermodal discontinuity with the intramodal dynamics to
yield:

base-state model

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi +
∑
i,l

(M(i, l )xt

+ (χi − χl )+ M(i, l )χi + ρ(i, l ))φi e′l1φt . (1.7)

Equation (1.7) is the fundamental model of time-continuous base-state evolution.
Its appearance is formidable. Be assured that while the various discontinuity and
set point conditions will appear in what follows, in no application will all occur
simultaneously! In many cases, (1.7) takes on a strikingly simpler form. It is ad-
vantageous to set apart some special instances of (1.7) because they are easier to
interpret.

LJS: The most often studied specialization of (1.7) is called a linear jump
system (LJS). In an LJS there is no regime-specific set point reference
(χ = 0,υ = 0), nor are there plant state discontinuities at modal tran-
sition [Mar90]. The LJS model is simply

dxt =
∑

i

((Ai xt + Bi ut) dt + Ci dwt)φi . (1.8)

Often the intensity of the Brownian excitation is constant across
regimes and there is no feedback control:

dxt =
∑

i

Ai xtφi dt + C dwt . (1.9)

We will find this simpler model to be useful in certain tracking applica-
tions.

JTS: In some applications, the plant state discontinuity has a particular
structure. There is neither rotation nor scaling. The plant state disconti-
nuity is a translation in the form of a difference between mode-specific
levels:ρ(i, l ) = ρl − ρi . Array these levels as rows of ans× n matrix
ρ = [ρi ]. The base-state dynamic equation of a jump translating system



P1: FCU/FIO P2: FCW/FGA P3: FDD/FGA QC:

CB195/Sworder chap-01 May 31, 1999 12:33

8 Hybrid Estimation

(JTS) can be written

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi + (ρ ′ − χ) dφt .

(1.10)

If the plant state is a continuous process and there is no control, the
JTS-model becomes even simpler:

dxt =
∑

i

Ai xtφi dt − χ dφt + C dwt , (1.11)

where the model is shown with constant Brownian intensity.
In interpreting the results derived on the basis of (1.7), we should recognize the

approximations inherent in the model. If we ignore the drift identified with the
feedforward implementation, the intrasojourn base-state dynamics are LGM. This
model is easily justified in a region about the set point where higher order deviation
variables are negligible. Exactly this kind of linearization procedure is accepted
practice in applications involving unimodal plants, and during quiescent periods,
Equation (1.5) – the intermodal restriction of (1.7) – is reasonable. If the set point
changes, the magnitude of the base-state vector will increase abruptly. The state of
a well-regulated plant will move expeditiously toward the new set point. In (1.7) the
evolution model uses the dynamics of the successor regime. There are systems for
which this concatenation of local models would be inappropriate (e.g., an unstable
system moves away from the new set point). We will not pursue this issue further
and will accept (1.7) as an adequate for our purposes.

The comprehensive plant state (base, mode) is a combination of continuous
and discrete elements. The base-state moves withinRn, and thoughφt ∈ Rs, the
modal-state has a finite range space. The modal process is usually thought to be
exogenous: The path of{8t } is indifferent to{xt }. Because it modulates the base-
state motion,{8t } is not, however, independent of{xt }. With this heterogeneous
state space structure, such plants are calledhybrid. Heterogeneity of various kinds
is becoming more common in applications, and the adjective “hybrid” is applied
quite broadly. Nevertheless, because it is so descriptive, we will use hybrid to refer
to plants and systems with this state space decomposition.

To complete the plant model, the temporal evolution of the modal-state must
be quantified. In much of what follows,{φt } will be represented by anFt -Markov
process satisfying the stochastic differential equation:

modal-state model

dφt = Q′φt dt + dmt (1.12)
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with initial conditionφ0. The S× S matrix Q is called the modal transition rate
matrix: If i 6= j, P(φt+dt = ej |φt = ei ) = Qi j dt with Qii = −∑l 6=i Qil . The
off-diagonal elements of theQ-matrix are nonnegative. The diagonal elements are
such as to make the row sums ofQ equal zero. It is known that the mean sojourn
time in stateφt = ei is−1/Qii , and ifφt = ei , the probability that the next modal
transition will beei 7→ ej is −Qi j /Qii . Consequently,Q can be particularized
from observations of the modal process. The second term in (1.12) is a purely
discontinuousFt -martingale increment:E[dmt |Ft ] = 0.

Equation (1.12) can be integrated into (1.7). Note thatφi e′l dφt = (Qil dt +
dml )φi . So

dxt =
∑

i

((Ai xt + Bi (ut − υφt)) dt + Ci dwt)φi +
∑
i,l

(M(i, l )xt

+ (χi − χl )+ M(i, l )χi + ρ(i, l ))(Qil dt + dml )φi . (1.13)

Though not a particularly appealing relation, (1.13) can be made easier to interpret
if we collect some of the terms that have a common influence. Let

A i = Ai +
∑

l

Qil M(i, l ),

2(i, l ) = χi − χl + M(i, l )χi + ρ(i, l ), (1.14)

ρi · =
∑

l

2(i, l )Qil .

In these terms, the base-state model can be written

dxt =
∑

i

((A i xt + Bi (ut − υφt)) dt + Ci dwt)φi

+
∑
i,l

(M(i, l )xt +2(i, l ))φi dml + ρ′φt dt. (1.15)

The equation of base-state dynamics has the general appearance of an LGM
model but it differs in important particulars. The state matrix,A i , of {xt } is com-
posed of the intramodal component(Ai ) plus a component determined by both the
direction of the linear, intermodal discontinuity and its likelihood (

∑
l Qil M(i, l )).

The control matrix,Bi , is that of the intramodal model. The translational disconti-
nuity in the plant state is reflected inρ′φt dt. There is a collection of terms in the
drift of {xt } not found in the classical models of control and estimation. The model
is highly nonlinear with the modal-state a multiplier throughout.

The increment in{xt } also contains exogenous forcing terms. One is a wideband
noise term (Ci dwt ) also found in LGM models. The other is neither linear nor
Gaussian. The plant state discontinuity term,

∑
i,l (M(i, l )xt + 2(i, l ))φi dml , is
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an increment of a purely discontinuous martingale. The coefficient,(M(i, l )xt +
2(i, l ))φi , contains base- and modal-state products.

The specialized dynamics of an LJS are not changed when the modal process is
Markovian because the modal dynamics do not enter the base-state equation. The
base-state evolution of the JTS can be written:

dxt =
∑

i

((Ai xt + Bi (ut − υφt)+ (ρ ′ − χ)Q′ei ) dt

+ Ci dwt)φi + (ρ ′ − χ) dmt . (1.16)

Equation (1.16) contains the same types of excitation found in the more compre-
hensive model, (1.15), but the simpler structure of (1.16) will be reflected in the
estimation algorithm; compare(ρ ′ −χ) dmt with

∑
i,l (M(i, l )xt +2(i, l ))φi dml .

In this book, we will present algorithms for generating (or approximating){x̂t }
and {φ̂t }. The accuracy of the estimates depends upon the quality and kind of
sensors available in the application. A model for one kind of sensor is displayed in
(1.4). The measurement is time continuous, linear in plant state, and the noise is
additive and Gaussian. We will refer to (1.4) as the model of theplant state sensor
even though{yt } may be generated by a collection of individual devices arrayed
in a suite. For example, there may be radars aboard a set of geographically diverse
platforms (shipboard, land-based, and air-based) with all tracking the same target.
It is this aggregate that is called the plant state sensor. The noise in the observation
is determined by both the sensor and the geometry (e.g., range), after linearization
if necessary.

When the measurement frequency is too slow to justify using (1.4), the plant state
sensor outputs are more accurately viewed as a time-discrete sequence. Suppose
observations occur with intersample periodT . A linear, time-discrete measurement
of the plant state at timet = kT is a direct analogue of (1.4):

plant state measurement: time-discrete

y[k] = Hχ [k] + n[k], (1.17)

where{n[k]} is a Gaussian white noise process with covarianceRx (Rx > 0), inde-
pendent of the exogenous processes in (1.13). As is the case when the measurements
are time continuous, if{φt } is known,{y[k]} can be recast as a measurement of the
base-state uncontaminated by the mode:y[k] − Hχφ[k] = Hx[k] + n[k], and the
measurement residualis defined to be the difference between what the output is
and what it is predicted to be:

r [k] = y[k] − E[y[k] |G[k− 1]] = Hx̃[k]− + n[k].
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In this case,r [k] is equal to the innovations increment1ν[k]. With imperfect
knowledge of{φ[k]}, the measurement residual (and the innovations increment)
is

r [k] = Hx̃[k]− + Hχφ̃[k]− + n[k].

There is thus a mixing of base-state and modal-state errors in which the base-state
error, x̃[k]−, is conflated with abase-state equivalent error, χφ̃[k]−. Of course,
during long sojourns in a regime, the modal-state is probably identified rather well
(φ̃[k] ≈ 0), and the observation reverts to its orthodox form.

For LJS with known modal path, the Kalman filter generates the conditional
mean of the base-state for either time-continuous or time-discrete measurements.
Look at the time-continuous case, and denote the filtration generated bygt =
vec(yt , φt) by Gφt . Theφ superscript is used to distinguish this filtration (perfect
modal knowledge) from those that follow (noisy modal measurements or none).
The Kalman filter generates two base-state moments: the conditional mean,x̂t =
E[xt | Gφt ], and the conditional error covariance,Pxx(t) = E[ x̃t x̃′t | Gφt ]. If x0 is
N(x̂0, Pxx(0)), the estimate and the error are Gaussian. The Kalman filter generates
theGφt -conditional distribution of the base-state (xt is N(x̂t , Pxx(t)) from which
other statistical properties of the estimate can be derived. One form of the Kalman
filter is [BW92, Figure 7.1]

Kalman filter: time-continuous state, time-continuous measurement

dx̂t =
∑

i

Ai x̂tφi dt + γx dνt (1.18)

subject to

d

dt
Pxx =

∑
i

(Ai Pxx + Pxx A′i + Rχ(i ))φi − γx Rxγ
′
x. (1.19)

The factorγx = PxxH ′R−1
x is the Kalman gain and

dνt = dyt − H(χφ + x̂t) dt

is aGφt -innovation increment.
The Kalman filter is familiar to engineers, and comprehensive studies of its

properties are available. There are features of the Kalman filter that warrant com-
ment. The base-state estimate prescribes concurrent extrapolation(

∑
i Ai x̂tφi dt)

and correction(γx dνt). The direction of extrapolation is determined by the current
A-matrix (selected byφt ). Correction is achieved by weighting the innovations
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increment withγx. The Kalman gain,γx = PxxH ′R−1
x , increases with observation

quality (H ) and decreases with sensor noise intensity (Rx). The gain also increases
as the estimation uncertainty increases. (The base-state error covariance,Pxx, is
sometimes called theuncertainty matrix.) An increase inPxx makes the Kalman
filter more data-driven whereas a decrease inPxx makes the Kalman filter more
model-driven.

Modal dependence enters the Kalman filter in a direct manner. The{x̂t } and{Pxx}
dynamics change in concert with{φt }. Although{φt } is a random process,{Pxx}
is random only because the coefficients in (1.19) are random: If the modal process
were known a priori,Pxx could be precomputed. In any case, the error covariance
is independent of the base-state observation{yt }.

Equation (1.18) has an intuitively appealing form. Note that

E [dxt |Gφt ] =
∑

i

Ai x̂tφi dt

and that the innovation process is aGφt -martingale. The equation of evolution of
the base-state estimate is

dx̂t = E[dxt |Gφt ] + dµt ,

whereµt is aGφt -martingale [Kri84]. The increment in the mean is the mean of the
increment plus a correction that is a martingale increment. For the system under
study, allGφt -martingales are integrals with respect to the innovations process: All
Gφt -martingale increments areGφt -predictable multiples of the innovation increment.
The last term above must be of the form of a gain multiplyingdνt [Ell82].

In applications in which the measurement is time discrete, the Kalman filter can
be deduced formally from (1.18) and (1.19). Begin at timekT with the filter in
state(x̂[k], Pxx[k]). For the discrete-time case, it is convenient to distinguish the
pre-updateversion of the base-state estimate from thepost-updateestimate. Denote
the extrapolated state vector estimate at time(k + 1)T by x̂[k + 1]− = x̂(k+1)T− ,
and similarly denote the covariance byPxx[k+1]− = Pxx((k+1)T−). Integration
of the measurement at time(k + 1)T gives rise to a correction to the pre-update
estimate:1x̂[k + 1] = x̂[k + 1] − x̂[k + 1]− and similarly1Pxx[k + 1] = Pxx

[k+ 1]− Pxx[k+ 1]−. The filter residualr [k+ 1] = y[k+ 1]− H(χφ[k+ 1]−
x̂[k+ 1]−) is the innovations increment. The residual process is a white Gaussian
process with covarianceRyy[k] (with inverseDyy[k] = Syy[k]′Syy[k]):

Ryy = E[r [k] r [k]′ |Gφ[k− 1]] = H Pxx[k]−H ′ + Rx = Dyy[k]−1.

The discrete form of theGφ[k]-filter is given in [BW92, Figure 5.9].
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Kalman filter: time-continuous state; time-discrete measurements

Between observations:

d

dt
x̂t =

∑
i

Ai x̂tφi , (1.20)

d

dt
Pxx =

∑
i

(Ai Pxx + Pxx A′i + Rχ(i ))φi . (1.21)

At an observation:

1x̂[k+ 1] = γxr [k+ 1], (1.22)

1Pxx[k+ 1] = −γx Ryy[k+ 1]γ ′x, (1.23)

whereγx = Pxx[k+1]−H ′Dyy[k+1]. Equations (1.20)–(1.23) follow from (1.18)
and (1.19) by making the replacements

(i) in extrapolation,R−1
x → 0,

(ii) in correction,E[dνt dν ′t |Gφt ]/dt→ Ryy[k].
Like the continuous Kalman filter, its discrete sibling is a predictor–corrector,

but the prediction and correction are not concurrent. Correction takes place at the
observation times with a difference in the gain: For time-discrete measurements,
γx = PxxH ′R−1

yy ; for time-continuous measurements,γx = PxxH ′R−1
yy /dt, where

R−1
yy /dt (= E[dνt dν ′t | Gφt ]/dt) is the intensity of the residual process. As in the

time-continuous case, the observation gain increases with improved sensor quality.
The time-discrete residual process is a white, Gaussian process:rk ∈ N(0, Ryy[k]).
If the residual is scaled bySyy[k], a unit Gaussian white sequence is obtained:
Syy[k] r [k] ∈ N(0, I ).

The Kalman filter is a complete solution to the estimation problem as posed,
but most applications do not fall neatly within the modeling paradigm. Nonlin-
earities and discontinuities neglected in the model cause the performance of the
Kalman filter to degrade. The influence of mismodeling is seen frequently in sim-
ulation exercises where the size of the estimation error can be contrasted with the
computed error covariance. In an actual system, the true error is not known. But
the residuals can be measured, and if{Syy[k]r [k]} is not a unit white noise pro-
cess, the model of the plant and sensor may need to be refined. When{r [k] r [k]′}
consistently exceedsRyy[k], the filter is said to exhibitexcess error; if Pxx is
small, the filter residual may exceed the standard deviation of the noise in a single
measurement.
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1.2 A Tracking Example

To illustrate some of the issues that arise in hybrid estimation within the context of
a concrete example, consider a tracking problem in which we wish to determine the
position and velocity of an evasive aircraft moving in theX–Y plane. (The altitude
is essentially constant.) Targets with limited thrust control maneuver byjinking:
The turn rate tends to be nearly constant over intervals with sudden changes at
unpredictable times. Suppose the aircraft is detected at a range of 36 km (t = 0)
traveling at a speed of 300 m/s. The aircraft coasts (nearly constant velocity flight)
for three seconds (t ∈ [0, 3)), makes a 7 gturn to the right for six seconds (t ∈
[3, 9)), coasts for two seconds (t ∈ [9, 11)), makes a 7 gturn to the left for five
seconds (t ∈ [11, 16)), and then returns to coast. Increased drag during a turn causes
the aircraft to slow to 60% of the speed that it had entering the turn with a 40%
increase in speed when a turn transitions to coast. During an interval of constant
turn rate (including coast), the speed is fairly constant.

A rudimentary motion model for the aircraft between changes in turn mode is

d


X
Y
Vx

Vy

 =


0 0 1 0
0 0 0 1
0 0 0 −8
0 0 8 0




X
Y
Vx

Vy

 dt +


0 0
0 0
1 0
0 1

 d

[
wx

wy

]
. (1.24)

In this tracking problem, there is no plant state reference point; that is, the plant
dynamics are linear overR4 (χ = 0), and the plant state is the base-state. Moreover,
there is no endogenous actuating signal; that is, the tracker has no control over target
motion (υt ≡ 0). The base-state consists of{X,Y}, the position coordinates, and
{Vx,Vy}, the associated velocities. The target is subject to two types of acceleration:
(i) a wide band, omnidirectional acceleration described by the Brownian motion
{wx, wy}with intensityW and (ii) a maneuver acceleration represented by the turn
rate process{8t }. The speed is slowly varying when the turn rate is constant, and
so the omnidirectional acceleration is small: LetCi = e2⊗ I2 for all i andW = I2.
The intensity of the acceleration is about 0.1 g.

The jinking behavior can be captured by partitioning the range of possible turn
rates into three levels:

8t ∈ {a1 = 0.2r/s, φt = e1;a2 = 0r/s, φt = e2;a3 = −0.2r/s, φt = e3}.
The turn rate is given by8t = a′φt . A change in motion mode causes a change in
speed, but no rotation:

• At the beginning or end of a turn, the position process is continuous:
[Xt+,Yt+] = [Xt−,Yt−].
• At the beginning of a turn(8 7→ a1 or8 7→ a3) the target slows by 40%:

[Vx(t+),Vy(t+)] = 0.6[Vx(t−),Vy(t−)].
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• At the end of a turn(8 7→ e2), the target speed increases by 40%, but not
enough to attain the pre-turn velocity: [Vx(t+),Vy(t+)] = 1.4 [Vx(t−),
Vy(t−)]

In this example, a turn-to-turn transition is not allowed. The intraregime model of
the aircraft can be written as the stochastic differential equation:

dxt =
∑

i

Ai xtφi dt + dwt , (1.25)

where

Ai =


0 0 1 0
0 0 0 1
0 0 0 −ai

0 0 ai 0

 .
At the origin of the coordinate system,(0, 0), there is a sensor. A radar measures

the position of the target every second with Gaussian errors of 40 m in range and
1.75 mr in bearing (approximately 63 m at 35 km). This measurement is not linear
in the coordinate system selected for the motion model:y[k] = r(x[k]) + n[k]
instead ofy[k] = Hx[k] + n[k]. The measurement relation can be linearized, not
about the set point, but about the computed state estimate,x̂t , itself. A replacement
for the measurement residual isr [k] = y[k] − r(x̂[k]−). The covariance update
is computed using theχ -gradient ofr evaluated at̂x[k] in place of H in (1.22)
and (1.23). This ancillary linearization is commonly done when the sensor nonlin-
earities are smooth and the estimation errors reasonably small, and it leads to an
instance of the extended Kalman filter (EKF) [GA93, Table 5.4]. Similar output
linearization will be performed in what follows wherever required without further
comment.

The most rudimentary approach to the tracking problem would be to ignore
the turn process and design an EKF based upon the specification of radar quality
given above. Supposêx0 = x0 and the initial covariance is taken to be diagonal
with standard deviation in position (100 m) and velocity (20 m/s): The tracker is
initialized at the true state of the aircraft and the initial uncertainty is larger than
the single-measurement sensor error. The Brownian disturbances on the path are
small: SetW = 1. Figure 1.1 shows a sample path of the nominal EKF as afeather
plot referenced to a target path generated withW = 0. (A feather plot connects
the estimates of location after a measurement to the true location. A point is shown
every 0.1 s for clarity. The speed changes are not visible on the target path.) With
the advantageous initialization,EKF(W=1) begins well. The target model ignores
turns and none occur at first.
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Figure 1.1. The path of a target with estimates fromEKF(W=1).

When the target turns and slows, the performance ofEKF(W=1) degrades. As the
target turns to the right,EKF(W=1) fails to follow and extrapolates between radar
measurements in the direction of the initial velocity. The position error is corrected
in part when a radar measurement is received, but the gain is too small to bring
x̂t back toxt . The velocity correction is also far too small. With no direct velocity
measurement,EKF(W=1) misinterprets{y[k]}. This creates tracking errors far in
excess of the raw radar noise (about 60 m). It is not until the reverse turn has
begun thatEKF(W=1) identifies the velocity, but this is an artifact of the path.
The error going into the final coast is quite large and the velocity estimate is
abysmal.

The EKF, in contrast to less structured estimators (e.g., theα − β tracker),
not only generates an estimate of the base-state, but it also provides an assess-
ment of its own performance. The upper left submatrixPxx(1 : 2, 1 : 2) gives
the error covariance in position. A one-σ region of target location is found by
centering an ellipse determined byPxx(1 : 2, 1 : 2) aboutx̂t . In some adaptive es-
timators, the radar pulse shape (and the signal-to-noise ratio (SNR) of the sensor)
and the tracking window are dependent on the size, shape, and location of this error
ellipse.

Figure 1.2 displays the target path along with the one-σ error ellipses (shown
every 0.2 s for clarity) centered at the location estimates. The ellipses are near
circles in this case because of the symmetry in the measurement. On the first coast,
when the dynamic hypotheses of the EKF match the motion, tracking uncertainty
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Figure 1.2. The path of a target with error ellipses generated byEKF(W=1).

is reduced (the ellipses shrink) with each radar measurement. The true path lies
within or next to the envelope of the one-σ error circles. When the target turns to
the right and slows,EKF(W=1) fails to react. AlthoughEKF(W=1) tacks away
from the true path, the error ellipses evidence no sensitivity to the growth in the size
of the measurement residuals. The residuals may exceed 10σ , a near impossibility
if the errors were truly Gaussian. After completing the first turn, the target path lies
several standard deviations away from{x̂t } except when the target turns back into
the estimate: The estimates are bad but the filter fails to acknowledge just how bad
they are. A Gaussian density has thin tails, and the persistent presence of excess
error as shown in Figure 1.1 is highly unlikely. The EKF’s sanguine attitude would
lead to loss-of-lock if the radar energy were focused in a three-σ window about
{x̂t }.

With the approximations we have made in the design of this EKF, it is not sur-
prising that it may need to be adjusted or tuned for this application. The nominal
EKF is too sluggish to follow an agile target. In principle, any of the coefficients in
EKF(W=1) could be changed to make it more responsive. However, the aircraft dy-
namics and the observation equation are constrained by the physics of the path (e.g.,
the{Ai , i ∈ S}) or the geometry of the sensors (e.g.,H ). Tuning in the EKF usually
concentrates on the intensities of the exogenous disturbances:W = E[dwtdw′t ]/dt
(the plant noise) orRx = E[nkn′k] (the sensor noise). In fact, the focus is more
commonly on the former because there are stronger empirical restrictions on the
latter.
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WhenW is increased to account for various modeling inaccuracies,pseudonoise
is said to be added to the plant. For example, the motion model given in (1.24) is
a low dimension representation of a very complicated object. An engineer could
argue that the neglect of dynamic modes in the model causes the computed value
of Pxx to be smaller than the true error covariance. For example, when the turns are
ignored, the primary plant excitation is disregarded. IfW is increased, the computed
{Pxx} is made larger. This increases the filter gain and the responsiveness of the
EKF as well. While pseudonoise augmentation has proved useful in applications,
the higher gains do magnify the sensor noise. Additionally, additive white noise
does not preserve the path geometry associated with the modes that are ignored,
and this mismodeling may lead to performance that is far from optimal.

Let us try to improve the response ofEKF(W=1) by pseudonoise augmentation.
To rationalize the level of pseudonoise, recognize that the target accelerations also
include the turns. SetW = 100. The standard deviation of1Vx over one second
is 10 m/s, which is equivalent to a 1 gconstant acceleration. Over six seconds or
so this would be roughly thewhite-noise equivalentof the turn process involving
a 7 g turn over six seconds and intervening coasts. Of course, this equivalence is
crude: The Brownian motion is continuous whereas the turn rate process is not;
the Brownian motion acts throughout the tracking interval, whereas the turn rate
changes at isolated times; the Brownian motion is omnidirectional, whereas the
turn places specific geometric constraints on the target path.

Figure 1.3 shows the feather plot of a sample of an EKF with this pseudonoise
augmentation. The effect of pseudonoise is beneficial for the most part. After the first
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Figure 1.3. The feather plot forEKF(W=100).


