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Preface

Who Should Read This Book

This book is intended for engineers and designers who seek to develop effective
estimation and control algorithms for nonlinear systems. The reader is assumed
to have some background in random processes and estimation (see, for example,
[Pap91]) along with familiarity with concepts of feedback control phrased within
the context of linear state space models (see, for example, [DB95] or [Wol94]).
This background should include knowledge of

• random variables and processes,
• probability density and distribution functions for random variables, both

continuous and discrete,
• moments and cross moments, including correlation functions,
• second-order properties of stationary processes, including power spectral

densities,
• conditional expectations with respect to an observation process,
• fundamental properties of feedback systems, including stability and con-

trollability of a system model.
Both time-continuous and time-discrete processes will be encountered. Some fa-
miliarity with mean-square estimation is useful. For example, in the development
of the Kalman filter [BW92, Chapter 7], linear state space models are integrated
with Gaussian white noise. The Kalman filter will form a basis of comparison for
many of the estimators that follow.

Our treatment is applications oriented, but the reader will find that nonlinear
systems require more detailed analysis than is necessary in the study of linear
systems. For example, a common approach to linear estimation uses a system
model phrased as a set of ordinary differential equations with continuous white
noise excitation [May79, Chapter 4]:

ẋt = Axt + But + Cwt , (0.1)

xiii
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xiv Preface

where xt is the state, ut is the actuating signal, and wt is an exogenous, Gaussian
white noise excitation. This model, or its time-discrete analogue, suffices to rep-
resent the dynamics of system evolution. The Kalman filter is based, in part, upon
such a model.

Equation (0.1) is an adequate expression of system dynamics in many situations.
But because of the pathological properties of white noise, it is sometimes preferable
to replace the differential equation (0.1) with an integral equation:

xt = x0 +
∫ t

0
(Axs + Bus) ds +

∫ t

0
C dws . (0.2)

It is easier to give consistent meaning to the integrals in Equation (0.2) than it is
interpret the path properties of white noise [WH85, Chapter 3, Section 8]. Stochas-
tic integral equations such as (0.2) are often written in a differential form using
increments [Ell82]; for example, (0.2) would be written

dxt = (Axt + But) dt + C dwt , (0.3)

where (0.3) is taken to be shorthand for (0.2). System analysis can then be carried
out in terms of the increments, retaining only terms of order one or less in dt . This
formal calculus of increments permits a coordinated treatment of processes, both
continuous and piecewise continuous.

When the system is nonlinear, additional difficulties arise because nonlinear
operations on white noise paths are difficult to interpret, whether in the form (0.1)
or (0.2). Suppose the dynamic evolution of the system is represented by a vector
stochastic differential equation:

dxt = f(xt , ut) dt + g(xt , ut) dηt , (0.4)

where {ηt} is a random process and represents the unpredictable disturbances that
influence state evolution. Equation (0.4) is interpreted to say that, from state xt

at time t , the plant has a deterministic drift in the direction f(xt , ut). About this
extrapolation, there is a random perturbation (dηt ) with multiplier g(xt , ut).

In an introductory analysis, we might divide both sides of (0.4) by dt to arrive
at a model that has a more conventional appearance:

ẋt = f(xt , ut) + g(xt , ut)η̇t .

If {ηt} were Brownian motion, {η̇t} would be Gaussian white noise. However, {ηt}
is not necessarily Brownian and may indeed have discontinuous sample paths.
Equation (0.4) is better written

xt = x0 +
∫ t

0
f(xs, us) ds +

∫ t

0
g(xs, us) dηs . (0.5)
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Preface xv

Because the integrands in (0.5) are random, care must be exercised in their expli-
cation.

Preliminaries

First, we present some basic notational conventions. An integer index set {1,. . . , S}
will be designated S. Boldface vectors labeled e are canonical unit vectors whose
dimension is always clear from the context: ei is the i th canonical unit vector in
R

k . We shall encounter Ei j = ei e′
j and Ei = Ei i ; 1, a vector of “ones;” and I, the

identity matrix. The dimension of these matrices will be determined by context. The
statement “x is N(m, P)” (or “x ∈ N(m, P)”) means that x is a Gaussian random
variable with (mean, covariance) equal to (m, P), though sometimes N(m, P) will
represent the probability density itself. The Hadamard product “∗” is defined by
(x ∗ y)i = xi yi . If λ is a vector, none of whose components is zero, we shall refer
to the vector of inverses as λ−1: λ ∗ λ−1 = 1. An integral over the whole space is
written

∫
�; for example,

∫
� f (u) du indicates an integration over the full range of

the variable labeled u.

In what follows, subscripts are used in a variety of ways. We wish to avoid iterated
subscripts because such forms make the equations harder to read. Suppose we are
dealing with the time interval [0,T], and at time t , νt is the value of the vector
process {νt ; t ∈ [0,T]} (written {νt}). Where no confusion will arise, a subscript
may identify time, the component of the vector, or a particular set of components
of the vector. For the process {νt}, {ν1} denotes the scalar process that is the first
component of {νt}, while {νx} is a subvector of processes in {νt} that is associated
in some way with another process {xt}.

This notation becomes ambiguous when the process is time discrete: {νt ; t = kT,

k ∈ N}. The sequence {νkT ; k ∈ N} will be written {ν[k]}. A component sequence
from {ν[k]} would be {νi [k]}. This notational convention becomes complicated
when {ν[k]} is a sequence of functions of some spatial variable “z.” When the
spatial variable needs to be made explicit, the sequence is written {ν[k](z)} with
components {νi [k](z)}. If there is concern that the meaning of the subscript is hard
to determine from context, the more explicit notation will be used (e.g., (νi [k] =
e′

iν[k]).
Subscripts also appear as identifiers. To make explicit the variables involved in

correlation and covariance matrices, they are sometimes identified with subscripts
(e.g., E[xy′] = Rxy). The time dependence of the moment may be written as a
direct argument (e.g., E[xt y′

t ] = Rxy(t) or, alternatively, E[x[k]y[k]′] = Rxy[k]).
Subvectors and submatrices will be denoted in different ways depending on context:
If Pxx is a matrix related to a vector x, Pxx(r : s, t : v) is the submatrix formed
from rows r through s of columns t through v; Pxi x is the i th row of the matrix
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xvi Preface

(and is usually associated with the i th component of the vector x) and Pxxi is the
i th column. A matrix Syy(t) is the square root of the positive symmetric matrix
Pyy(t) if Syy(t)′Syy(t) = Pyy(t). There are many square roots of a positive matrix
and their differences are important in computation. We are concerned only with
representation of matrices and thus any of the square roots will do for our purposes.
Given the multiplicity of uses, when confusion regarding the interpretation of a
subscript may exist, multiple subscripts will perforce be used.

Random Processes

In this book we will look at the properties of random processes defined on a
probability space (�,F,P) (see, [Ell82]) on a time interval [0,T] (alternatively
t = kT ; k ∈ N). The set of events F is a σ -field. A random variable is a (real-
valued) F-measurable function. A random vector has components that are random
variables, and a random process is a time-indexed set of random vectors [Pap91,
Chapter 10].

In estimation and control the notion of conditional expectation is important.
Our definition of conditional expectation differs from that found in introductory
engineering texts. Suppose x and y are random variables (understood to be on
(�,F,P)). Another σ -field, Y , on � is said to be coarser than F if every element
of Y is necessarily an element of F : Y is coarser than F (i.e., Y ⊂ F ); F is
finer than Y . The coarsest σ -field (necessarily within F) with respect to which
y is a random variable is said to be the σ -field generated by y and is possibly
labeled descriptively (e.g., Y). Clearly y is a Y-random variable (a random variable
on (�,Y,P)). The expectation of x given y (denoted E[x |Y]) is the Y-random
variable with all of the orthodox properties of conditional expectation given in
[Pap91, Chapter 7]. Idiomatically, we would say that E[x |Y] is a random variable
expressible as a function of y.

We will deal with conditioning, not just on random variables, but on the sample
paths of random processes. On (�,F,P), there are several elemental random
processes. All of them are piecewise right continuous (or continuous); that is, if {yt}
is a random process, yt = yt+. Let {xt} and {yt} be random processes and consider
{yt} on the interval [0, s]. There is a coarsest σ -field within F with respect to which
events determined by {yu; u ∈ [0, s]} (the past and present of {yt}) are measurable.
This σ -field will be called Ys . The indexed family of σ -fields, {Yt}, is the filtration
generated by {yt} (see, [Ell82, p. 332]). This filtration is right continuous because
{yt} is right continuous and, moreover, is such that if s ≤ t then Ys ⊂ Yt . There
is also a left continuous filtration generated by {yu; u ∈ [0, s)} and labeled {Y t−}.
A process {xt} is Yt -adapted if xt is a Yt -random variable for every t . A process
{xt} is Yt -predictable if xt is Y t−-measurable for every t. Indeed, the predictable
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Preface xvii

version† of a right continuous process is given by its left continuous modification.
So, if {xt} is a right continuous random process and generates {X t}, then {xt−}, the
left continuous modification of {xt}, generates {X t−}, the filtration of “past events.”

There may be different filtrations on (�,F,P) relevant to the application, and
if we wish to distinguish the filtration of interest we will write the probability space
and filtration as (�,F,P;F t). All of the elemental processes in this book are
F t -adapted.

If {xt} is a state process and {yt} is an observation process, an engineer may seek
the expectation of xt conditioned on the past of {yt}: Idiomatically this estimate is
said to be a function of the observations up to time t or to be causal. Write this
conditional expectation E[xt |Yt ]. The conditional mean E[xt |Yt ] is a Yt -random
variable, which we will write as x̂t if the conditioning filtration is apparent from
context. The random process {x̂t} is a Yt -adapted random process (also called a
Yt -random process). If confusion might arise as to the conditioning filtration, the
conditional mean process would be written {x̂t ;Yt}. Since Yt is coarser than F t

the estimation error is an F t -random variable. For example, xt is F t -adapted and
x̂t is Yt -adapted. Hence, the error x̃t = xt − x̃t must be an F t -random variable but
likely not a Yt -random variable.

The structure of random processes on (�,F,P;F t ) can be quite complex. For-
tunately we will not have to face processes of a general type. Instead, only two
circumscribed classes of elemental F t -random processes will appear in the ap-
plications that follow. The first is composed of F t -Brownian motions: A (vector)
random process {wt} is a Brownian motion if w0 = 0, and when s ≤ t, wt − ws is
N(0, W (t −s)) and independent ofF s (see, [Ell82, Definition 12.27]). We will refer
to W as the intensity of the Brownian motion. It is easily seen that E[wtw

′
t ] = W t .

Brownian motion is an F t -martingale process: If s ≤ t , E[wt |F s] = ws .
It is useful to develop a formal calculus of increments. Increments are defined in

the forward direction (e.g., dwt = wt+dt − wt with dt > 0). Associated with {wt}
is the F t -predictable quadratic variation process, 〈w, w;F t 〉t . The F t -predictable
quadratic variation process is the integral of its increments, where d〈w, w;F t 〉t =
E[dwt dw′

t |F t ]. Since dwt dw′
t = W dt [WH85, Proposition 3.4], it follows that

〈w, w;Gt 〉t = W t for any filtration {Gt} (d〈w, w;Gt 〉t = W dt).
The second class of elemental processes contains Ft -Markov processes on the

canonical unit vectors in R
S . Such a process, {φt}, is characterized by its initial

probability distribution, (φ̂0), and its transition rates. Let the S × S-matrix Q have
as its elements Qi j = P(φt+dt = e j |φt = ei )/dt if i �= j , with Qii = − ∑

j �=i Qi j .
The generator of the Markov process {φt} is Q′, a matrix with nonnegative elements

† If xt and yt are random variables on the same probability space and P(xt = yt ) = 1 for all t , then
the variables are said to be versions or modifications of each other.
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xviii Preface

off the diagonal and column sums equal to zero. Because the state space of {φt} is the
canonical unit vectors, P(φt = ei ) = E[ei

′φt ]. Let us add the discontinuities to the
forward increment. Define dφt as φt+dt − φt−. If {φt} has a discontinuity at time t ,
this will be denoted �φt = φt −φt−. It is easily shown that E[dφt |F t ] = Q′φt dt .

Define dmt = dφt − Q′φt dt . Then {mt} has discontinuities where {φt} does:

�mt = mt − mt− = φt − φt−.

Clearly, E[dmt |F t ] = 0: {mt} is an Ft -martingale (see, [EAM95, Section 7.2]).
The Ft -predictable quadratic variation of {mt} is defined as with {wt}, but {mt} has
a fundamentally different character. First, if {φt} makes no transitions in the interval
[t, t + dt], then dmt dm ′

t ≈ 0: {mt} is called a purely discontinuous Ft -martingale
because, excluding jumps, its quadratic variation is zero. Alternatively, if {φt} makes
the transition ei �→ e j in [t, t + dt], then �mt�m ′

t = (e j − ei )(e j − ei )
′ =

Ei + E j − Ei, j − E j,i . If φt = ei ,

d〈m, m;F t 〉t =
∑

j

(Ei + E j − Ei j − E j i )P(φt+dt = e j |φt = ei ).

The general expression for d〈m, m;F t 〉t = E[�mt�m ′
t |F t−] is given as a func-

tion of Q in the Appendix 1.
Sometimes martingales with continuous paths (e.g., {wt}) appear in combination

with martingales with discontinuous paths (e.g., {mt}) to form a composite mar-
tingale {ηt}. In fact, any Ft -martingale can be separated into its continuous and
discontinuous parts: ηt = ηc

t + ηd
t where {ηc

t } is a continuous process and {ηd
t } is

purely discontinuous. The two are mutually orthogonal: d〈ηc
t , η

d
t ;F t 〉t = 0 [Ell82,

Chapter 9]. For example, d〈w, m;F t 〉t = E[dwt dm ′
t | F t ] = 0. Additionally,

two purely discontinuous processes without common jump times are orthogonal:
If {�φt�ψ ′

t } is essentially the zero process, d〈φ, ψ;F t 〉t = 0.
The composite martingale {ηt} has associated with it another quadratic pro-

cess. The optional quadratic variation, [η, η]t , is determined from its increments:
d[η, η]t = dηt dη′

t . It can also be found by adding the outer product of the jumps
in {ηt} to the predictable quadratic variation:

d[η, η]t = d〈ηc
t , η

c
t ;F t 〉t + �ηt�η′

t .

The optional cross quadratic variation of two martingales is similarly defined
[Kri84, Chapter 4].

Stochastic Differential Equations

Equation (0.5) relates the actuating signal to the system state. This is an integral
equation with differential embodiment given in (0.4). For this model to be useful,
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Preface xix

each of the terms on the right side of (0.5) must be given clear meaning. The first in-
tegral,

∫
[0,t] f(xs, us)ds, is of a conventional sort if the sample functions of {f(xt , ut)}

are well behaved. The second integral,
∫

[0,t] g(xs, us)dηs , is more problematic. The
integrand {g(xt , ut)} is an Ft -random process and in what follows {ηt} is an Ft -
martingale. It is advantageous to define the integral using the predictable version
of the integrand; that is,

∫
[0,t] g(xs, us)dηs is better written

∫
[0,t] g(xs−, us−)dηs

[Ell82, Theorem 11.44]. For consistency, the stochastic differential equation could
be written

dxt = f(xt−, ut−) dt + g(xt−, ut−) dηt

since the increment in {xt} depends upon the antecedent values of the arguments
rather than their current values. For simplicity, we will not distinguish the pre-
dictable versions of the random processes in the differential equations even though
the left continuous version of the integrands will appear in the integrals.

The output of the system is represented with a stochastic differential equation
too:

dgt = r(xt , ut) dt + s(xt , ut) dnt , (0.6)

where {gt} is the output process or the observation process as appropriate. The com-
ponents of the Ft -martingale {nt} that appear in (0.6) would be called observation
noise or the equivalent. It is through {gt} that the value of {xt} can be determined. Let
the filtration generated by {gt} be labeled {Gt}. This output filtration is a subfiltration
of Ft . For any Ft -random process {ζt}, denote the Gt -conditional expectation with
a circumflex and the Ft -conditional error with a tilde: For example, ζ̂t = E[ζt |Gt ];
ζ̃t = ζt − ζ̂t .

An important process related to the Gt -mean is the innovation process. The
innovation process, labeled {νt}, is generated from its increments:

dνt = dgt − E[dgt |Gt ].

This terminology is “motivated by the observation that, formally, νt+h − νt repre-
sents the ‘new’ information about (the system state) obtained from observations
between t and t + h” [Ell82, Definition 18.6].

Sometimes the observations are not time continuous but instead have a natural
sampling interval. An example of this is a radar tracking an aircraft. The aircraft
path is continuous (i.e., modeled as in (0.4)), but the observations occur every T
seconds beginning at t = 0. In this case, we would replace (0.6) with

g[k] = r(x[k], u[k]) + s(x[k], u[k])n[k], (0.7)

where g[k] is the output (or observation) at time t = kT , and similarly for x[k] and
u[k]. In this model, {n[k]} is not typically anFt -martingale but may be a sequence of
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xx Preface

martingale increments (E[n[k] |F kT ] = 0). The output sequence, {g[k]}, generates
a filtration, {Gt}, which is defined for all t ∈ [0,T], not just t ∈ {0, T, 2T, ....}.
However, since new information appears at the output at distinct times, it is true
that {x̂t} tends to have discontinuities at sample times.

In some circumstances, the system state is time discrete:

x[k + 1] = f(x[k], u[k]) + g(x[k], u[k])η[k + 1]. (0.8)

If the state and measurement grid are the same, a time-discrete system with time-
discrete measurements has a structure like that given above with natural changes
in terminology.

Some Useful Results from Martingale Theory

This section lists some useful results from martingale theory. The statements do
not include certain qualifications to be found in the references [Ell82].

Definition 1 The process {Xt} is corlol (for continuous on the right, limits
on the left) if there is a modification of {Xt} such that

Xt(ω) = lim
s→t+

Xs(ω)

and

Xt−(ω) = lim
s→t−

Xs(ω).

Definition 2 Given any process {Xt} adapted toFt , if there exists a process
{At} such that A0 = 0, {At} isFt -predictable, {At} has corlol sample paths
of locally finite variation, and {Xt − At} is an Ft -martingale, then {At} is
called the predictable compensator of {Xt} relative to Ft

Theorem 1 (Doob–Meyer Decomposition Theorem) If the random pro-
cess {Xt} has a predictable compensator, then it is unique in the sense that
any two predictable compensators are equal to each other for all t .

This statement of the Doob–Meyer Decomposition Theorem is Proposition
3.2 in [WH85]. See [DM82] for a proof.

Theorem 2 (Martingale Representation Theorem) Suppose the filtra-
tion {Ft} is generated by the local semimartingale Xt = Bt + Wt , where
{Bt} is of bounded variation and {Wt} is a Brownian motion or a point pro-
cess. Then any Ft -local semimartingale {Zt} can be written as a stochastic
integral against {Wt}. That is, there exists an Ft -predictable function {γt}
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Preface xxi

such that

Zt = Z0 +
∫ t

0
γs dWs .

The Brownian motion version is due to a generalization by Fujisaki et al.
[FKK72] of the works of Itô [Itô51], Kunita and Watanabe [KW67], and
Clark [Cla70]. The extension to point processes is due to Brèmaud [Brè72].

Theorem 3 Let {St} be a process, not necessarily adapted toGt , a filtration
generated by the continuous or purely discontinuous martingale {νt}. Let
Ŝt = E[St |Gt ], and define a process {Bt} by d Bt = E(d St |Gt). Then
{Ŝt − Bt} is a Gt -martingale, and there exists a Gt -predictable function γt

such that

d Ŝt = E(d St |Ft) + γt dνt .

Proof ([WH85]): Since Gt is increasing,

E(d Ŝt |Gt) = E{[E(St+dt |Gt+dt) − E(St |Gt)]}
= E(St+dt |Gt) − E(St) |Gt)

= d Bt .

Therefore, Ŝt − Bt = Mt is a Gt -martingale. By Theorem 2, Mt can be
represented as a stochastic integral against {νt}.

Theorem 3 provides a cornerstone for system estimation theory. It implies that
under modest conditions, the estimator of St is the solution to a stochastic differential
equation driven by the innovation process.
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