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Hybrid Estimation

1.1 Introduction

Common problems in design require that an engineer devise a control or decision
algorithm that converts measurements of system and environmental variables into
signals that aid in system regulation. For example, a control node converts sensor
outputs into an actuating signal that moves the system toward the desired operating
point and keeps it there. At this foundational level, the engineer must formulate
a mapping from the system observables into an action or report; for example, a
feedback regulator converts the measured outputs of the system to be controlled
(the plant) into an input that stabilizes the system.

Design is made difficult by disturbances internal to the system and by noise at
its output. For example, there may be no sensors that measure those plant variables
most useful for regulation, or, if measured, the variables may be masked by noise
in the sensor-to-regulator link. Lacking omniscience, an engineer must process the
available measurements to produce a good approximation to relevant but “hidden”
variables. And this inference must be done on-line. The processing algorithm must
not only be adapted to the incoming data stream, it must be of a form that can be
implemented: An implementable estimation algorithm is an explicit mapping of
the sensor output process (the measurements) into a (nearly) concurrent estimate
of the required variables. In the applications studied here, the need for contempo-
raneous response limits consideration to finite-dimensional recursive algorithms;
new observations are integrated into an estimate in an accretive manner.

Analytical design in estimation and control begins with a formal mathematical
description of the system to be controlled (the plant model). The model delineates
the response of the plant to endogenous actuating signals as well as representing
the influence of exogenous disturbances common to the application. The system
designer selects a control policy or a state estimation algorithm based in large part
upon the behaviors predicted by the model. The practicality of analytic procedures is
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2 Hybrid Estimation

linked closely to the realism of the plant model. However, realism must be tempered
by the need to have a model that is simultaneously flexible and tractable.

One useful paradigm phrases the plant model in terms of a set of nonlinear
stochastic differential equations. Let us start with a probability space (2, F, P) and
a time interval of interest, [0, T]. On this space there is a right-continuous filtration
{F:;0 <t < T} and right-continuous, F;-adapted random processes, {®,}, {w;},
and {n,}. Subject to initial conditions xo and g, the plant model is written:

plant model

dx, = f(x, v, ©) dt + g1, v, O;) dwy, (LD
dg: = r(xs, vr, @) dt + s(xs, vy, Y1) dny, (1.2)

where {v,} is an s-dimensional actuating process (the plant input), {g;} is an r-
dimensional observation process (the plant output), and {x,} is an n-dimensional
internal process (the plant state). Equation (1.1) describes the temporal evolution
of the internal variables within the plant, and (1.2) describes the sensor outputs
available for estimation and/or control.

This plant model is more complicated than that encountered in introductory
studies of feedback control. In applications, even when the actuating process is
specified, the realizations of the state and output paths are unpredictable — there
are many effects not well captured in a deterministic model. Chance influences in
the plant and sensor are represented by the stochastic processes in (1.1) and (1.2).
Various accretive effects are represented by {w,} and {n,}; for example, {w,} could
describe the high frequency modes ignored in a low-dimensional plant model, and
{n;} could describe noise at the sensor output. The environmental process, {®P,},
denotes external conditions of a more global sort that affect plant operation. The
value of {®,} might indicate the operational status of a subelement within the plant,
external conditions that influence the plant dynamics (e.g., temperature), the level
of loads placed upon the system by linked elements, etc. In contrast to {w;} and
{n,}, which tend to be aggregations of small increments, ®, may symbolize tem-
porally distinct events. (Friedland called @, the metastate when used in the context
of adaptive control; see [Fri96, Chapter 10].) All of these disturbance processes are
viewed by the designer as exogenous.

In both estimation and the control, the output signal, {g;}, is processed to create
causal estimates of important system variables. A filter provides estimates of the
current values of both the plant state vector and the environmental process. A
predictor estimates future values of the same variables. Often, the environmental
process has a character fundamentally different from the plant state. The value of &,
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1.1 Introduction 3

may be a symbolic variable (e.g., ®, € {normal operation, degraded operation}).
In this event, the average value of ®; has no meaning. Rather, the probability
distribution of @, is required to properly assess the status of the plant. Denote the
filtration generated by {g;} by {G,}. If mean square error is used as a performance
index, the estimation problem can be posed as follows:

Find an explicit processing algorithm to generate (or approximate) the mean plant
state §; = E[x;|G;] and the G,-probability distribution of ®,.

There are applications in which even this will not suffice and more comprehensive
statistical properties of the plant processes are required.

Unfortunately, even when formal descriptions of the exogenous processes are
integrated with (1.1) and (1.2), an elementary solution to this estimation problem
does not currently exist. There is, however, one special case in which astounding
success has been achieved. So much so that the solution thus derived is used in
circumstances far removed from those in which it was developed. Specifically,
suppose that the system has “smooth” nonlinearities, that the plant noise, {w,}, is a
Brownian motion, and that the environmental process, {®, }, is constant with known
value .. Associated with @, there is a nominal operating condition, both in the
state and in the actuating signal labeled (x;,, v,,). Frequently (x,, v,) is a condition
of plant stasis: f(xu, Un, D) = 0. The operating condition (or regime) is known
by different names: in the process control industry, ()., v,) is referred to as the
set point or the operating point; in aircraft flight control, (x,, v,) is referred to as
the trim condition; in other applications, (x,, v,) is simply the reference point. We
will use these terms interchangeably and note in this context that @, simply points
to the operating mode or regime with its value having no intrinsic meaning.

For a particular regime, there is a local description of the plant phrased in terms of
a set of perturbation variables. These are defined as the (usually small) deviations
in state and excitation from the set point: x, = x; — xu; 4y = vy — v,. Using
orthodox methods and neglecting higher order terms, the perturbation processes
are commonly represented by a linear stochastic differential equation with initial
condition taken to be Gaussian: xq is N(Xg, Pxx(0)), and

dx, == (Ax, + Bu,)dt + det, (13)

where {w,} is a Brownian motion with intensity W (d(w, w), = Wdt). Call {x,} the
base-state process to distinguish it from the plant state process, {x;}; call {u,} the
regulation signal to distinguish it from the plant input, {v,}. Equation (1.3) relates
the base-state to the inputs {u,} (endogenous) and {w;, } (exogenous). The base-state
excitation is a Brownian motion with intensity CWC’" = R,,. Of course, if the plant
is linear over a large region of the state space, (1.3) is valid without consideration
of the set point. In such applications, it is understood that y, and v, are both zero.
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4 Hybrid Estimation

The set point is known (P[®; = ®.] = 1) and need not be estimated, but
the plant state is frequently not known and must be inferred from sensor outputs.
Suppose a sensor provides a noisy but linear plant state measurement,

plant state measurement: time-continuous

dy[ = HX; dt +dn;, (1.4)

where {n,} is a Brownian motion independent of {w, }, with intensity Ry > 0 (d(n, n),
= R, dt), and yp = 0. By subtracting the contribution of the set point from
the output, (1.4) can be written as a noisy, linear measurement of the base-state:
dy, — H x,dt = Hx; dt + dn;. The innovation increment dv; = dy; — dJ, can be
written HX, dt + dn,, where X; = x; — X;. When there is only one sensor, g; = ;.
To differentiate this case from others that follow, denote the filtration generated
by {y:} by {J;} (= G; in this case), where a circumflex may be used to denote
Y,-expectation if no confusion will result. Equations (1.3) and (1.4) will be called a
linear-Gauss—Markov (LGM) model even when xg is not Gaussian. Although the
observation is unconventional, the regime offset is known and is accommodated
in a direct fashion. The base-state estimator is known for the LGM problem: the
Kalman filter. The Kalman filter generates {X;} using a simple recursive algorithm.
The plant state estimator is X; = x, + X;.

In the systems we will study, {®,} is not nearly so obliging. Instead of a single op-
erating point, {®,} may move about in its range space in response to the macroevents
that influence the plant. The temporal structure of the regime process has a funda-
mental impact on system analysis. If, for example, {®,} has sample paths that are
well described by a diffusion process, then {®,} can be integrated into (1.1) as an
additional plant state. This is an attractive option when the time constants of {®,}
are comparable with those of the plant, though this inclusion compounds the plant
nonlinearity.

In other applications, {®,} has a distinguishing feature that precludes orthodox
state augmentation. Suppose the plant has S possible operating regimes, and at any
particular time, &, takes on a value selected from a set of size S: ®, € {®;;i € S}.
The plant now has § possible reference points (or set points, etc.), and these are
identified with the S possible values of {®,}; that is, there are S vector pairs,
{(xi, vi); i € S}, which designate the S relevant stasis conditions for the plant. For
example, the kth nominal operating point for the plant is (x, vx), and if &, = oy
the plant input and state should be near (y, vg).

For simplicity, array the nominal states (respectively nominal actuating signals)
as an n x § matrix ) (respectively an s x S matrix v): x = [x;] (respectively
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1.1 Introduction 5

v = [v;]). During operation, the system will operate in one regime for a time
(®; = &, fort € [a, b)) and then suddenly shift (®;, = P ;) to another in response
to an external event or change in the surrounding environment. In most applications,
the discontinuous sample paths of {®,} are an approximation to the continuous
though abrupt modal transitions that actually occur. Nevertheless, the representation
of {®,} with a process of piecewise constant paths is a useful abstraction when the
interval over which the modal transition takes place is short as compared to the
important time constants of the plant.

Since the environmental process has a finite state space, {®,} can be represented
using a more illuminating notation. Let ¢; be a pointer to the current regime: The
state space of ¢, consists of the S canonical unit vectors in RS (¢, € {e, ..., es)).
The component in ¢, with value one marks the current mode of operation: If
o, = 4 then ¢, = er. The {¢,} process is called the modal-state process to
differentiate it from the base-state process. The base-state variables are deviations
from the current set point: x, = x; — X¢:; u; = v, — v@,. The comprehensive state
of the system is the composition of the base- and modal-states: The zygostate is the
pair (x;, ¢;). Since ¢, is an indicator vector, the expectation of the modal-state is
actually the conditional probability vector (13, = [P{¢; = €; |G:}].

Control in a multiregime environment presents some subtle challenges. When
the regime is known and constant (e.g., ¢, = e;), the actuating signal has a natural
decomposition (v; = u; + v¢;,) into a feedforward component associated with the
set point (ve; = v;) and a feedback component (u,) that maintains the plant state
near the set point (x; = x;). When the modal-state is neither known nor measured,
this implementation is not possible because proper feedforward control cannot be
generated. In applications, a variety of replacements for {v¢,} have been proposed.
We will not explore issues of feedforward control in any depth here. We will simply
employ {v¢,} as the “feedforward” component of the actuating signal: Ideal set
point actuation will be replaced with its expectation. Note, however, that a failure
to generate the proper feedforward actuating signal has an influence that must be
included in the base-state dynamics.

A comprehensive plant model requires a representation of evolution, both in-
tramodal and intermodal. Consider the former first. During an extended (known)
modal sojourn, proper control will place and maintain the plant state vector near the
correct set point. The natural plant model in this circumstance would be that local
model, selected from a family of regime-specific, linear models, associated with
the present mode of operation. The modal-state is a pointer, and the intrasojourn
model can be written:

dx; =Y ((Aix; + Bi(u; +v($, — €;))) dt + C; dw,)¢. (1.5)
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6 Hybrid Estimation

where {A;, B;, C;; i € S} are determined from (1.1) in precisely the way (1.3) was
in the unimodal (or unimorphic’) case.

Suppose the plant is in the ith mode (¢, = e;) and the modal estimate is a good
one (¢, ~ e;). The base-state dynamic equation is the ith selection from the family of
models: (A;x; + B;u,) dt + C; dw,. The exogenous excitation is a Brownian motion
with intensity R, (i) = C; WC;. There is an atypical term in (1.5) that is connected
with failure to implement the proper feedforward excitation (—B;v@,¢;dt). When
the estimate of ¢, is good, this last term is negligible, and the intramodal dynamics
are LGM.

The intramodal representation is but a part of the model of plant evolution. When
the regime changes, many things can happen to the plant state. There will be no
attempt to be exhaustive in this list, but we will encounter situations in which
the plant state translates, rotates, and/or is scaled. More specifically, suppose {P;}
makes the transition e; — €; at time ¢. Then {x,} may experience:

Translation: Ay, = p(i,1);i #1.
Rotation and/or scaling: Ay, = M@, ) x—;i #1,
where Ay, = x; — Xi—-

When the mode changes, the plant state may be transformed in a way that cre-
ates a path discontinuity. This abrupt change in plant state is an approximation
in most cases. But, if the interval over which a change takes place is small, a
discontinuous path model may provide a far simpler representation of the state
variation than would a continuous path model created from an intricate diffusion
process. To fill out the list of transformation matrices, let p(i,i) = 0, M (i, i) =
0; 7 €S. The indicator vector of the discontinuity event e; — e; at time ¢ can
be written as ¢;e;A¢,. The plant state discontinuity can be written explicitly
as

Axe = (MG, Dxi— + p(i, D)gie] Agy.
il

Discontinuities in {y;} are reflected directly in {x,}, but there is an additional
source of base-state discontinuity. When the mode changes e; — ¢, the base-state
reference level changes from y; to x;. Even if the plant state were continuous, the
base-state would experience a discontinuity:

Axy = —xAd;.

These intermodal transition conditions can be combined to yield the base-state

! We say a system may have one or several modes or, equivalently, forms. Hence a single-mode plant
is called unimodal (or unimorphic) to distinguish it from a polymodal (polymorphic) system.
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1.1 Introduction 7

discontinuity model:

Axp =Y (MG, Dxi—+ Ot — x0) + MG, Dxi + pG, D)piejAgy,.  (1.6)
il

Now combine the intermodal discontinuity with the intramodal dynamics to
yield:

base-state model

dx; = 3 ((Aixi + Bi(uy — vd)) di + C; dwi) i + S (M. Dxs

i il

+ i = x) + MG Dxi + p(, D)pie] Ady. (1.7)

Equation (1.7) is the fundamental model of time-continuous base-state evolution.
Its appearance is formidable. Be assured that while the various discontinuity and
set point conditions will appear in what follows, in no application will all occur
simultaneously! In many cases, (1.7) takes on a strikingly simpler form. It is ad-
vantageous to set apart some special instances of (1.7) because they are easier to
interpret.

LJS: The most often studied specialization of (1.7) is called a linear jump
system (LJS). In an LIS there is no regime-specific set point reference
(x = 0, v = 0), nor are there plant state discontinuities at modal tran-
sition [Mar90]. The LJS model is simply

dx; = S ((Aix; + Biu) di + Ci dwy) . (1.8)

Often the intensity of the Brownian excitation is constant across
regimes and there is no feedback control:

dx; =Y Aixi¢; dt + C dw;. (1.9)

We will find this simpler model to be useful in certain tracking applica-
tions.

JTS: In some applications, the plant state discontinuity has a particular
structure. There is neither rotation nor scaling. The plant state disconti-
nuity is a translation in the form of a difference between mode-specific
levels: p(i,[) = p; — p;. Array these levels as rows of an s X n matrix
o = [p;]. The base-state dynamic equation of a jump translating system
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8 Hybrid Estimation

(JTS) can be written

dx; =Y ((Aix; + Bi(u; — vepy)) dt + Ci dw)di + (' — x) d¢py.
' (1.10)

If the plant state is a continuous process and there is no control, the
JTS-model becomes even simpler:

dx, =ZAixt¢,'dt—Xd¢t+del, (L.11)
i

where the model is shown with constant Brownian intensity.

In interpreting the results derived on the basis of (1.7), we should recognize the
approximations inherent in the model. If we ignore the drift identified with the
feedforward implementation, the intrasojourn base-state dynamics are LGM. This
model is easily justified in a region about the set point where higher order deviation
variables are negligible. Exactly this kind of linearization procedure is accepted
practice in applications involving unimodal plants, and during quiescent periods,
Equation (1.5) — the intermodal restriction of (1.7) — is reasonable. If the set point
changes, the magnitude of the base-state vector will increase abruptly. The state of
a well-regulated plant will move expeditiously toward the new set point. In (1.7) the
evolution model uses the dynamics of the successor regime. There are systems for
which this concatenation of local models would be inappropriate (e.g., an unstable
system moves away from the new set point). We will not pursue this issue further
and will accept (1.7) as an adequate for our purposes.

The comprehensive plant state (base, mode) is a combination of continuous
and discrete elements. The base-state moves within R”, and though ¢; € R®, the
modal-state has a finite range space. The modal process is usually thought to be
exogenous: The path of {®,} is indifferent to {x;}. Because it modulates the base-
state motion, {®,} is not, however, independent of {x,}. With this heterogeneous
state space structure, such plants are called hybrid. Heterogeneity of various kinds
is becoming more common in applications, and the adjective “hybrid” is applied
quite broadly. Nevertheless, because it is so descriptive, we will use hybrid to refer
to plants and systems with this state space decomposition.

To complete the plant model, the temporal evolution of the modal-state must
be quantified. In much of what follows, {¢,} will be represented by an F,-Markov
process satisfying the stochastic differential equation:

modal-state model

dg, = Q'¢ dt + dm, (1.12)
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1.1 Introduction 9

with initial condition ¢y. The S x S matrix Q is called the modal transition rate
matrix: If i #£ j, P($rrar = (5 | = €;) = Qij dt with Q;; = — 2175[ Qi;. The
off-diagonal elements of the Q-matrix are nonnegative. The diagonal elements are
such as to make the row sums of Q equal zero. It is known that the mean sojourn
time in state ¢, = e; is —1/Q;;, and if ¢, = e;, the probability that the next modal
transition will be ¢; — e; is —Q;;/Q;;. Consequently, QO can be particularized
from observations of the modal process. The second term in (1.12) is a purely
discontinuous F;-martingale increment: E[dm,|F;] = 0.

Equation (1.12) can be integrated into (1.7). Note that ¢;e;d¢; = (Qi;dr +
dm;)qﬁi. So

dx; =Y ((Aix; + Bi(u; — vgy)) dt + Cidw)d; + »_(M(i, Dx,

i il
+ O —x)+ MG Dxi +pG,D)(Qudt +dm)e;. (1.13)

Though not a particularly appealing relation, (1.13) can be made easier to interpret
if we collect some of the terms that have a common influence. Let

Ai= A+ QuM(.D,
I

OG, D =xi —xi+ MG, Dy + pG,0), (1.14)
pi. =y O 1Qu.
!

In these terms, the base-state model can be written
dx; =Y ((Aix; + Bi(u; — vey)) di + Ci dwy)ei
i

+ ) (MG, Dxy + OG, D)y dmy + p'¢y dt. (1.15)
il

The equation of base-state dynamics has the general appearance of an LGM
model but it differs in important particulars. The state matrix, A;, of {x;} is com-
posed of the intramodal component (A;) plus a component determined by both the
direction of the linear, intermodal discontinuity and its likelihood (3~; Q;; M (i, )).
The control matrix, B;, is that of the intramodal model. The translational disconti-
nuity in the plant state is reflected in p’¢, dt. There is a collection of terms in the
drift of {x;} not found in the classical models of control and estimation. The model

is highly nonlinear with the modal-state a multiplier throughout.
The increment in {x,} also contains exogenous forcing terms. One is a wideband
noise term (C; dw;) also found in LGM models. The other is neither linear nor
Gaussian. The plant state discontinuity term, »; ,(M (i, Dx; + O, 1))¢; dmy, is
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an increment of a purely discontinuous martingale. The coefficient, (M (i, [)x; +
O(i, l))¢;, contains base- and modal-state products.

The specialized dynamics of an LJS are not changed when the modal process is
Markovian because the modal dynamics do not enter the base-state equation. The
base-state evolution of the JTS can be written:

dx; =Y ((Aix; + Bi(u; —vgy) + (o' — x)Q'e;) dt

+ Cidw)gi + (o' = x) dm. (1.16)

Equation (1.16) contains the same types of excitation found in the more compre-
hensive model, (1.15), but the simpler structure of (1.16) will be reflected in the
estimation algorithm; compare (p’ — x) dm; with YoM, Dx, + O3, D)gidmy.

In this book, we will present algorithms for generating (or approximating) {x,}
and {¢,}. The accuracy of the estimates depends upon the quality and kind of
sensors available in the application. A model for one kind of sensor is displayed in
(1.4). The measurement is time continuous, linear in plant state, and the noise is
additive and Gaussian. We will refer to (1.4) as the model of the plant state sensor
even though {y;} may be generated by a collection of individual devices arrayed
in a suite. For example, there may be radars aboard a set of geographically diverse
platforms (shipboard, land-based, and air-based) with all tracking the same target.
It is this aggregate that is called the plant state sensor. The noise in the observation
is determined by both the sensor and the geometry (e.g., range), after linearization
if necessary.

When the measurement frequency is too slow to justify using (1.4), the plant state
sensor outputs are more accurately viewed as a time-discrete sequence. Suppose
observations occur with intersample period 7. A linear, time-discrete measurement
of the plant state at time ¢t = kT 1is a direct analogue of (1.4):

plant state measurement: time-discrete

ylk]l = H x[k] + n[k], (1.17)

where {n[k]} is a Gaussian white noise process with covariance R, (R, > 0), inde-
pendent of the exogenous processes in (1.13). As is the case when the measurements
are time continuous, if {¢,} is known, {y[k]} can be recast as a measurement of the
base-state uncontaminated by the mode: y[k] — H x¢[k] = Hx[k] + n[k], and the
measurement residual is defined to be the difference between what the output is
and what it is predicted to be:

rlk] = ylk] — Ely[k]|Glk — 111 = Hx[k]™ + n[k].
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