This book describes the theory and practical implementation of three techniques for the generation of blue-green light: nonlinear frequency conversion of infrared lasers, upconversion lasers, and wide-bandgap semiconductor diode lasers.

The book begins with a discussion of the various applications that have driven the development of compact sources of blue-green light. Part 1 then describes approaches to blue-green light generation that exploit second-order nonlinear optics, including single-pass, intracavity, resonator-enhanced and guided-wave second harmonic generation. Part 2, concerned with upconversion lasers, investigates how the energy of multiple red or infrared photons can be combined to directly pump blue-green laser transitions. The physical basis of this approach is thoroughly discussed and both bulk-optic and fiber-optic implementations are described. Part 3 describes wide-bandgap blue-green semiconductor diode lasers, implemented in both II–VI and III–V materials. The concluding chapter reflects on the progress in developing these lasers and using them in practical applications such as high-density data storage, color displays, reprographics, and biomedical technology.

Compact Blue-Green Lasers provides the first comprehensive, unified treatment of this subject and is suitable for use as an introductory textbook for graduate-level courses or as a reference for academics and professionals in optics, applied physics, and electrical engineering.

WILLIAM P. RISK received the PhD degree from Stanford University in 1986. He joined the IBM Corporation in 1986 as a Research Staff Member at the Almaden Research Center in San Jose, CA. His work there for several years was concerned with the development of compact blue-green lasers for high-density optical data storage. More recently, he has been active in the emerging field of quantum information, and now manages the Quantum Information Group at the Almaden Research Center. Dr Risk has authored or coauthored some 70 publications in technical journals and conference proceedings and holds several patents.

TIMOTHY R. GOSNELL has been a technical staff member at Los Alamos National Laboratory since receiving his PhD in physics from Cornell University in 1986. He has pursued research activities in the areas of biophysics, nonlinear optics, ultrafast laser physics and applications, upconversion lasers, and most recently in the laser cooling of solids and applications of magnetic resonance to single-spin detection. He is the author of over 40 scientific papers and editor of several books in these
fields. In addition to his research work in the public sector, Dr Gosnell has recently entered the private sector as a senior scientist for Pixon LLC, an informatics startup company that applies information theory and advanced statistical techniques to image processing and the analysis of complex algebraic systems.

ARTO V. NURMIKKO received his PhD degree in electrical engineering from the University of California, Berkeley. Following a postdoctoral position at the Massachusetts Institute of Technology, he joined Brown University Faculty of Electrical Engineering in 1975. He is presently the L. Herbert Ballou University Professor of Engineering and Physics, as well as the Director of the Center for Advanced Materials Research. Professor Nurmikko is an international authority on experimental condensed matter physics and quantum electronics, particularly on the use of laser-based microscopies and advanced spectroscopy for both fundamental and applied purposes. His current interests are focused on optoelectronic material nanostructures and their device science. Professor Nurmikko is the author of approximately 270 scientific journal publications.
COMPACT BLUE-GREEN LASERS

W. P. RISK
T. R. GOSNELL
A. V. NURMIKKO
Contents

Preface xi

1 The need for compact blue-green lasers 1
 1.1 A short historical overview 1
 1.2 Applications for compact blue-green lasers 3
 1.2.1 Optical data storage 3
 1.2.2 Reprographics 5
 1.2.3 Color displays 6
 1.2.4 Submarine communications 8
 1.2.5 Spectroscopic applications 12
 1.2.6 Biotechnology 14
 1.3 Blue-green and beyond 17
References 17

Part 1 Blue-green lasers based on nonlinear frequency conversion 20
 2 Fundamentals of nonlinear frequency upconversion 20
 2.1 Introduction 20
 2.2 Basic principles of SHG and SFG 21
 2.2.1 The nature of the nonlinear polarization 21
 2.2.2 Frequencies of the induced polarization 23
 2.2.3 The d coefficient 28
 2.2.4 The generated wave 30
 2.2.5 SHG with monochromatic waves 34
 2.2.6 Multi-longitudinal mode sources 34
 2.2.7 Pump depletion 38
 2.3 Spatial confinement 43
 2.3.1 Boyd–Kleinman analysis for SHG with circular gaussian beams 43
 2.3.2 Guided-wave SHG 51
2.4 Phasematching

2.4.1 Introduction 56
2.4.2 Birefringent phasematching 57
2.4.3 Quasi-phasematching (QPM) 71
2.4.4 Waveguide phasematching 90
2.4.5 Other phasematching techniques 97
2.4.6 Summary 101

2.5 Materials for nonlinear generation of blue-green light 101

2.5.1 Introduction 101
2.5.2 Lithium niobate (LN) 101
2.5.3 Lithium tantalate (LT) 108
2.5.4 Potassium titanyl phosphate (KTP) 110
2.5.5 Rubidium titanyl arsenate (RTA) 115
2.5.6 Other KTP isomorphs 119
2.5.7 Potassium niobate (KN) 119
2.5.8 Potassium lithium niobate (KLN) 121
2.5.9 Lithium iodate 123
2.5.10 Beta barium borate (BBO) and lithium borate (LBO) 124
2.5.11 Other materials 126

2.6 Summary 130

References 130

3 Single-pass SHG and SFG

3.1 Introduction 149

3.2 Direct single-pass SHG of diode lasers 151

3.2.1 Early experiments with gain-guided lasers 151
3.2.2 Early experiments with index-guided lasers 154
3.2.3 High-power index-guided narrow-stripe lasers 156
3.2.4 Multiple-stripe arrays 157
3.2.5 Broad-area lasers 160
3.2.6 Master oscillator–power amplifier (MOPA) configurations 161
3.2.7 Angled-grating distributed feedback (DFB) lasers 169

3.3 Single-pass SHG of diode-pumped solid-state lasers 170

3.3.1 Frequency-doubling of 1064-nm Nd:YAG lasers 177
3.3.2 Frequency-doubling of 946-nm Nd:YAG lasers 177
3.3.3 Sum-frequency mixing 178

3.4 Summary 178

References 179
Contents

4 Resonator-enhanced SHG and SFG
4.1 Introduction 183
4.2 Theory of resonator enhancement 187
4.2.1 The impact of loss 189
4.2.2 Impedance matching 191
4.2.3 Frequency matching 193
4.2.4 Approaches to frequency locking 194
4.2.5 Mode matching 207
4.3 Other considerations 213
4.3.1 Temperature locking 213
4.3.2 Modulation 214
4.3.3 Bireflection in monolithic ring resonators 215
4.4 Summary 220
References 220

5 Intracavity SHG and SFG
5.1 Introduction 223
5.2 Theory of intracavity SHG 224
5.3 The “green problem” 229
5.3.1 The problem itself 229
5.3.2 Solutions to the “green problem” 231
5.3.3 Single-mode operation 235
5.4 Blue lasers based on intracavity SHG of 946-nm Nd:YAG lasers 245
5.5 Intracavity SHG of Cr:LiSAF lasers 249
5.6 Self-frequency-doubling 250
5.6.1 Nd:LN 251
5.6.2 NYAB 252
5.6.3 Periodically-poled materials 253
5.6.4 Other materials 253
5.7 Intracavity sum-frequency mixing 253
5.8 Summary 255
References 256

6 Guided-wave SHG
6.1 Introduction 263
6.2 Fabrication issues 264
6.3 Integration issues 269
6.3.1 Feedback and frequency stability 270
6.3.2 Polarization compatibility 276
6.3.3 Coupling 282
6.3.4 Control of the phasematching condition 283
6.3.5 Extrinsic efficiency enhancement 284
Contents

6.4 Summary 286
References 287

Part 2
Upconversion lasers: Physics and devices
7 Essentials of upconversion laser physics 292
\[7.1\] Introduction to upconversion lasers and rare-earth optical physics 292
\[7.1.1\] Overview of rare-earth spectroscopy 295
\[7.1.2\] Qualitative features of rare-earth spectroscopy 296
7.2 Elements of atomic structure 303
\[7.2.1\] The effective central potential 303
\[7.2.2\] Electronic structure of the free rare-earth ions 306
7.3 The Judd–Ofelt expression for optical intensities 324
\[7.3.1\] Basic formulation 325
\[7.3.2\] The Judd–Ofelt expression for the oscillator strength 329
\[7.3.3\] Selection rules for electric dipole transitions 336
7.4 Nonradiative relaxation 338
7.5 Radiationless energy transfer 341
7.6 Mechanisms of upconversion 345
\[7.6.1\] Resonant multi-photon absorption 345
\[7.6.2\] Cooperative upconversion 348
\[7.6.3\] Rate equation formulation of upconversion by radiationless energy transfer 357
\[7.6.4\] The photon avalanche 360
7.7 Essentials of laser physics 363
\[7.7.1\] Qualitative picture 364
\[7.7.2\] Rate equations for continuous-wave amplification and laser oscillation 365
7.8 Summary 382
References 383

8 Upconversion lasers 385
8.1 Historical introduction 385
8.2 Bulk upconversion lasers 397
\[8.2.1\] Upconversion pumped Er\(^{3+}\) infrared lasers 398
\[8.2.2\] Er\(^{3+}\) visible upconversion lasers 410
\[8.2.3\] Tm\(^{3+}\) upconversion lasers 420
\[8.2.4\] Pr\(^{3+}\) upconversion lasers 424
\[8.2.5\] Nd\(^{3+}\) upconversion lasers 425
8.3 Upconversion fiber lasers 427
\[8.3.1\] Er\(^{3+}\) fiber lasers; \(^4\!S_{3/2} \rightarrow ^4I_{15/2}\) transition at 556 nm 433
Contents

8.3.2 Tm$^{3+}$ fiber lasers 436
8.3.3 Pr$^{3+}$ fiber lasers 445
8.3.4 Ho$^{3+}$ fiber lasers, $^5S_2 \rightarrow ^5I_6$ transition at ~ 550 nm 455
8.3.5 Nd$^{3+}$ fiber lasers 457
8.4 Prospects 458
References 460

Part 3 Blue-green semiconductor lasers 468

9 Introduction to blue-green semiconductor lasers 468

9.1 Overview 468

9.2 Overview of physical properties of wide-bandgap semiconductors 470

9.2.1 Lattice matching 470
9.2.2 Epitaxial lateral overgrowth (ELOG) 472
9.2.3 Basic physical parameters 474

9.3 Doping in wide-gap semiconductors 475

9.4 Ohmic contacts for p-type wide-gap semiconductors 478

9.4.1 Ohmic contacts to p-AlGaInN 479
9.4.2 New approaches to p-contacts 481
9.4.3 Ohmic contacts to p-ZnSe: bandstructure engineering 482

9.5 Summary 484
References 484

10 Device design, performance, and physics of optical gain of the InGaN QW violet diode lasers 487

10.1 Overview of blue and green diode laser device issues 487

10.2 The InGaN MQW violet diode laser: Design and performance 488

10.2.1 Layered design and epitaxial growth 488
10.2.2 Diode laser fabrication and performance 496

10.3 Physics of optical gain in the InGaN MQW diode laser 501

10.3.1 On the electronic microstructure of InGaN QWs 506
10.3.2 Excitonic contributions in green-blue ZnSe-based QW diode lasers 509

10.4 Summary 513
References 513

11 Prospects and properties for vertical-cavity blue light emitters 517

11.1 Background 517

11.2 Optical resonator design and fabrication: Demonstration of optically-pumped VCSEL operation in the 380–410-nm range 518
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1 All-dielectric DBR resonator</td>
<td>519</td>
</tr>
<tr>
<td>11.2.2 Stress engineering of AlGaN/GaN DBRs</td>
<td>521</td>
</tr>
<tr>
<td>11.3 Electrical injection: Demonstration resonant-cavity LEDs</td>
<td>524</td>
</tr>
<tr>
<td>11.4 Summary</td>
<td>530</td>
</tr>
<tr>
<td>References</td>
<td>530</td>
</tr>
<tr>
<td>12 Concluding remarks</td>
<td>533</td>
</tr>
<tr>
<td>References</td>
<td>536</td>
</tr>
<tr>
<td>Index</td>
<td>537</td>
</tr>
</tbody>
</table>
Since the mid-1980s, the development of practical, powerful sources of coherent visible light has received intense interest and concentrated activity. This interest and activity was fueled by twin circumstances: the realization of powerful, efficient infrared laser diodes and the emergence of numerous applications that required compact visible sources. The availability of these infrared lasers affected the development of visible sources in two ways: It stimulated the investigation of techniques for efficiently converting the infrared output of these lasers to the visible portion of the spectrum and it encouraged the hope that the fabrication techniques themselves might be adapted to make similar devices working at shorter wavelengths.

Within the visible spectrum the blue-green wavelength region has demanded – and received – special attention. The demonstration of powerful red diode lasers followed relatively soon after the development of their infrared counterparts – in contrast, the extension to shorter blue-green wavelengths has required decades of wrestling with the idiosyncrasies of wide-bandgap materials systems. The first blue-green diode lasers were not successfully demonstrated until 1991, and it has only been within the past year or two that long-lived devices with output powers of tens of milliwatts have been achieved.

As this field emerged and began to grow, it quickly became evident that it would necessarily be a very multi-disciplinary one. On one hand, a variety of approaches were being pursued in order to generate blue-green light. The three main ones – nonlinear frequency conversion, upconversion lasers, blue-green semiconductor lasers – are the focus of this book. The common goal of developing laser devices capable of emitting as much as several watts in the 400–550-nm spectral range brought together experts in nonlinear optical materials, diode-pumped solid-state lasers, guided-wave optics, rare-earth spectroscopy, semiconductor material processing and laser diode device physics. On the other hand, the range of applications for such devices attracted experts from such diverse fields as biomedical
Preface

engineering, display science and technology, optical data storage, and undersea communications.

Capturing this broad range of both approach and application in a book of reasonable length has been challenging, as has been writing clearly for readers that we expect will come to this book from a wide variety of disciplines and backgrounds. In the interest of clarity, we have included some material introducing and explaining basic concepts of nonlinear optics, rare-earth spectroscopy, and semiconductor device physics. Some readers will already be completely familiar with this material and may wish to skip directly to sections that explain in greater depth the application of these basic principles to specific approaches for generating blue-green light. Other readers may appreciate a brief refresher in some of these concepts – the reader who is fully conversant with nonlinear optics, rare-earth spectroscopy, and semiconductor device physics is probably a rare creature! Still other readers may wish to consider some of these basic ideas in greater depth – for these, we have recommended where possible other books that treat these subjects and have also made available some supplementary material on the Cambridge University Press website at http://publishing.cambridge.org/resources/0521623189.

We are indebted to several colleagues who provided information and insight concerning their particular areas of expertise, and who read portions of the manuscript and provided helpful suggestions for its improvement: Peter Bordui, Mark Dowley, Jian Ding, Dave Gerstenberger, Jung Han, Heonsu Jeon, Dieter Jundt, Parag Kelkar, Leslie Kolodziejski, Bill Kozlofsky, Suzanne Lau, Bill Lenth, Eric Lim, Gabe Loiacono, Roger Macfarlane, John Nightingale, Roger Petrin, Richard Powell, John Quagliano, Bob Shelby, Y-K. Song, and Andrey Vertikov. Any deficiencies that remain reflect the stubbornness or inattention of the authors and should not be ascribed to any of these esteemed colleagues! We would also like to thank several people on the staffs of the IBM Almaden Research Center Library, the Los Alamos National Laboratory Research Library, and of Brown University, in particular, Donna Berg, Bev Clarke, Vi Ma, and Sandra Spinacci. Finally, we are grateful to numerous other colleagues who graciously allowed us to reprint material from the original publications of their work.

February 2002

W. P. Risk
San Jose, CA

T. R. Gosnell
Los Alamos, NM

A. V. Nurmikko
Providence, RI