Plants at the Margin

Ecological Limits and Climate Change

Plants at the limits of their distribution are likely to be particularly affected by climate change. Biogeography, demography, reproductive biology, physiology and genetics all provide cogent explanations as to why limits occur where they do. The book brings together these different avenues of enquiry, in a form that is suited to students, researchers and anyone with an interest in the impact of climate change. Margins are by their very nature environmentally unstable – does it therefore follow that plant populations adapted for life in such areas will prove to be pre-adapted to withstand the changes that may be brought about by a warmer world? This and other questions are explored concerning the changes that may already be taking place on this planet. Numerous illustrations are included to remind us that knowledge of the existence of plants in their natural environment is essential to our understanding of their function and ecology in a changing world.

R. M. M. Crawford has taught and researched at the University of St Andrews since 1962, pursuing the study of plant responses to the environment in a wide range of habitats in Scotland, Scandinavia, North and South America and the Arctic. He is a Fellow of the Royal Society of Edinburgh, a Fellow of the Linnean Society and an associate member of the Belgian Royal Academy.
Plants at the Margin
Ecological Limits and Climate Change

R. M. M. Crawford
Professor Emeritus, University of St Andrews, Scotland
For Barbara

and all who inhabit, study and
value marginal lands

Fortunatus et ille, Deos qui novit agrestes Virgil, Georgics: Book II
Contents

Preface xiii
Acknowledgements xv

PART I THE NATURE OF MARGINAL AREAS

1 Recognizing margins 3
 1.1 Defining margins 5
 1.2 Margins and climate change 5
 1.3 Limits to distribution 8
 1.3.1 Physiological boundaries 9
 1.3.2 Resource availability 9
 1.3.3 Resource access and conservation in marginal areas 15
 1.4 Genetic boundaries 17
 1.5 Demographic factors 17
 1.5.1 Limits for reproduction 19
 1.6 Relict species and climate change 19
 1.6.1 Evolutionary relicts 20
 1.6.2 Climatic relicts 20
 1.7 Endangered species 23
 1.8 Agricultural margins 24
 1.9 Conclusions 26

2 Biodiversity in marginal areas 29
 2.1 Biodiversity at the periphery 31
 2.2 Assessing biodiversity 31
 2.2.1 Definitions of biodiversity 31
 2.2.2 Problems of scale and classification 34
 2.2.3 Variations in assessing genetic variation 35
 2.3 Variation in peripheral areas 36
 2.4 Disturbance and biodiversity 36
 2.4.1 Grazing 37
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2 Fire</td>
<td>42</td>
</tr>
<tr>
<td>2.5 The geography of marginal plant biodiversity</td>
<td>43</td>
</tr>
<tr>
<td>2.5.1 The South African Cape flora</td>
<td>45</td>
</tr>
<tr>
<td>2.5.2 Mediterranean heathlands</td>
<td>48</td>
</tr>
<tr>
<td>2.5.3 Mediterranean-type vegetation worldwide</td>
<td>50</td>
</tr>
<tr>
<td>2.5.4 The Brazilian Cerrado</td>
<td>51</td>
</tr>
<tr>
<td>2.6 Plant diversity in drylands</td>
<td>52</td>
</tr>
<tr>
<td>2.7 Plant diversity in the Arctic</td>
<td>57</td>
</tr>
<tr>
<td>2.8 Conclusions</td>
<td>59</td>
</tr>
</tbody>
</table>

PART II PLANT FUNCTION IN MARGINAL AREAS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Resource acquisition in marginal habitats</td>
<td>63</td>
</tr>
<tr>
<td>3.1 Resource necessities in non-productive habitats</td>
<td>65</td>
</tr>
<tr>
<td>3.2 Adaptation to habitats with limited resources</td>
<td>68</td>
</tr>
<tr>
<td>3.2.1 Capacity adaptation</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2 Functional adjustment</td>
<td>70</td>
</tr>
<tr>
<td>3.2.3 Adverse aspects of capacity adaptation</td>
<td>72</td>
</tr>
<tr>
<td>3.2.4 Climatic warming and the vulnerability of specific tissues</td>
<td>74</td>
</tr>
<tr>
<td>3.3 Habitat productivity and competition</td>
<td>77</td>
</tr>
<tr>
<td>3.3.1 Plant functional types</td>
<td>78</td>
</tr>
<tr>
<td>3.4 Life history strategies</td>
<td>81</td>
</tr>
<tr>
<td>3.4.1 Two-class life strategies</td>
<td>81</td>
</tr>
<tr>
<td>3.4.2 Three-class life strategies</td>
<td>83</td>
</tr>
<tr>
<td>3.4.3 Four-class life strategies</td>
<td>83</td>
</tr>
<tr>
<td>3.5 Resource allocation</td>
<td>84</td>
</tr>
<tr>
<td>3.6 Resource acquisition in marginal areas</td>
<td>85</td>
</tr>
<tr>
<td>3.6.1 Competition for resources in marginal areas</td>
<td>85</td>
</tr>
<tr>
<td>3.6.2 Deprivation indifference</td>
<td>86</td>
</tr>
<tr>
<td>3.6.3 Deprivation indifference through anoxia tolerance</td>
<td>87</td>
</tr>
<tr>
<td>3.6.4 Avoiders and tolerators</td>
<td>89</td>
</tr>
<tr>
<td>3.7 Alternative supplies of resources</td>
<td>90</td>
</tr>
<tr>
<td>3.7.1 Light</td>
<td>90</td>
</tr>
<tr>
<td>3.7.2 Precipitation</td>
<td>91</td>
</tr>
<tr>
<td>3.7.3 Ground water</td>
<td>92</td>
</tr>
<tr>
<td>3.7.4 Carbon</td>
<td>96</td>
</tr>
<tr>
<td>3.7.5 Nitrogen</td>
<td>98</td>
</tr>
<tr>
<td>3.7.6 Phosphate</td>
<td>100</td>
</tr>
<tr>
<td>3.7.7 Phosphate availability at high latitudes</td>
<td>101</td>
</tr>
<tr>
<td>3.8 Mycorrhizal associations in nutrient-poor habitats</td>
<td>102</td>
</tr>
<tr>
<td>3.8.1 Mycorrhizal associations in the Arctic</td>
<td>102</td>
</tr>
<tr>
<td>3.8.2 Cluster roots</td>
<td>103</td>
</tr>
<tr>
<td>3.9 Nutrient retention in marginal areas</td>
<td>103</td>
</tr>
<tr>
<td>3.10 Changes in resource availability in the Arctic as a result of climatic warming</td>
<td>106</td>
</tr>
<tr>
<td>4 Reproduction at the periphery</td>
<td>109</td>
</tr>
<tr>
<td>4.1 Environmental limits to reproduction</td>
<td>111</td>
</tr>
<tr>
<td>4.2 Sexual reproduction in marginal habitats</td>
<td>111</td>
</tr>
<tr>
<td>4.2.1 Pre-zygotic and post-zygotic limitations to seed production</td>
<td>111</td>
</tr>
<tr>
<td>4.3 Germination and establishment in marginal areas</td>
<td>114</td>
</tr>
<tr>
<td>4.4 Phenology</td>
<td>116</td>
</tr>
<tr>
<td>4.4.1 Reproduction in flood-prone tropical lake and river margins</td>
<td>116</td>
</tr>
<tr>
<td>4.5 Hybrid zones</td>
<td>118</td>
</tr>
<tr>
<td>4.5.1 Transient and stable hybrids</td>
<td>118</td>
</tr>
<tr>
<td>4.5.2 Hybrid swarms</td>
<td>120</td>
</tr>
<tr>
<td>4.5.3 Spartina anglica – common cord grass</td>
<td>122</td>
</tr>
<tr>
<td>4.5.4 Senecio squalidus – the Oxford ragwort</td>
<td>123</td>
</tr>
<tr>
<td>4.6 Genetic invasion in marginal areas</td>
<td>126</td>
</tr>
<tr>
<td>4.6.1 Invasion and climatic warming</td>
<td>127</td>
</tr>
<tr>
<td>4.6.2 Climatic warming, disturbance and invasion</td>
<td>130</td>
</tr>
<tr>
<td>4.6.3 Theories on habitat liability to invasion</td>
<td>131</td>
</tr>
<tr>
<td>4.7 Reproduction in hot deserts</td>
<td>131</td>
</tr>
<tr>
<td>4.7.1 Diversity of plant form in drought-prone habitats</td>
<td>131</td>
</tr>
<tr>
<td>4.7.2 Desert seed survival strategies</td>
<td>134</td>
</tr>
<tr>
<td>4.8 Flowering in arctic and alpine habitats</td>
<td>135</td>
</tr>
<tr>
<td>4.8.1 Annual arctic plants</td>
<td>140</td>
</tr>
</tbody>
</table>
4.9 Mast seeding 142
4.10 The seed bank 146
4.10.1 Polar seed banks 147
4.10.2 Warm desert seed banks 148
4.11 Biased sex ratios 148
4.12 Clonal growth and reproduction in marginal habitats 153
4.12.1 Asexual reproduction 153
4.13 Longevity and persistence in marginal habitats 155
4.14 Conclusions 158

5.7 Future trends at the tundra–taiga interface 193
5.7 Plant survival in a warmer Arctic 197
6.1 Defining the Arctic 199
6.2 Signs of change 199
6.3 The Arctic as a marginal area 204
6.3.1 Mapping arctic margins 204
6.4 Pleistocene history of the arctic flora 205
6.4.1 Reassessment of ice cover in polar regions 205
6.4.2 Molecular evidence for the existence of glacial refugia at high latitudes 211
6.4.3 Evidence for an ancient (autochthonous) arctic flora 213
6.5 Habitat preferences in high arctic plant communities 213
6.5.1 Incompatible survival strategies 214
6.5.2 Ice encasement and the prolonged imposition of anoxia 214
6.6 Mutualism in arctic subspecies 215
6.7 Polyploidy at high latitudes 216
6.8 Arctic oases 219
6.9 Phenological responses to increased temperatures 221
6.10 Conclusions 224

7.5 Land plants at coastal margins 225
7.7 Challenges of the maritime environment 227
7.7.1 The concept of oceanicity 228
7.7.2 Physical versus biological fragility 231
7.8 Northern hemisphere coastal vegetation 235
7.8.1 Foreshore plant communities 235
7.8.2 Dune systems of the North Atlantic 238
7.8.3 Arctic shores 240
7.9 Southern hemisphere shores 246
7.9.1 Antarctic shores 246
7.9.2 New Zealand 248
7.10 Global shore communities 250
7.10.1 Salt marshes and mudflats 250
Contents

7.4.2 Rising sea levels and mudflats 251

7.5 Hard shores 252
7.5.1 Cliffs and caves 252
7.5.2 North Atlantic cliffs 254

7.6 Trees by the sea 256
7.6.1 Mangrove swamps 256

7.7 Physiological adaptations in coastal vegetation 263
7.7.1 Drought tolerance 263
7.7.2 Nitrogen fixation 264
7.7.3 Surviving burial 264
7.7.4 Flooding 267

7.8 Conservation versus cyclical destruction and regeneration in coastal habitats 269
7.9 Conclusions 271

8 Survival at the water’s edge 273
8.1 Flooding endurance 275
8.1.1 Life-form and flooding tolerance 277
8.1.2 Seasonal responses to flooding 281

8.2 Aeration 281
8.2.1 Radial oxygen loss 281
8.2.2 Thermo-osmosis 282

8.3 Responses to long-term winter flooding 284
8.3.1 Surviving long-term oxygen deprivation 285

8.4 Flooding and unflooding 286
8.4.1 Unflooding – the post-anoxic experience 286

8.5 Responses to short-term flooding during the growing season 287
8.5.1 Disadvantages of flooding tolerance 289

8.6 Amphibious plant adaptations 290
8.6.1 Phenotypic plasticity in amphibious species 290
8.6.2 Speciation and population zonation in relation to flooding 291

8.7 Aquatic graminoids 292
8.7.1 *Glyceria maxima* versus *Filipendula ulmaria* 295

8.7.2 Sweet flag (*Acorus calamus*) 295
8.7.3 Reed sweet grass (*Glyceria maxima*) 298
8.7.4 The common reed (*Phragmites australis*) 300
8.7.5 Amphibious trees 301
8.8 Tropical versus temperate trees in wetland sites 301
8.9 Conclusions – plants with wet feet 305

9 Woody plants at the margin 307
9.1 Woody plants beyond the treeline 309
9.2 Woody plants of the tundra 311
9.3 Montane and arctic willows 314
9.4 Mountain birches 318
9.4.1 Biogeographical history of mountain birch 322
9.4.2 Current migration 323
9.5 Dwarf birches *Betula nana* and *B. glandulosa* 323
9.5.1 Biogeographical history of dwarf birch 323
9.6 Ecological sensitivity of woody plants to oceanic conditions 324
9.7 Juniper 326
9.8 Heathlands 329
9.8.1 Relating heathlands to climate 329
9.8.2 Possible migration behaviour 332
9.8.3 Historical ecology of heathlands 334
9.9 New Zealand: a hyperoceanic case study 334
9.10 Conclusions 337

10 Plants at high altitudes 339
10.1 Altitudinal limits to plant survival 341
10.2 Mountaintop isolation 343
10.2.1 Inselbergs – isolated mountains 345
10.2.2 African inselbergs 347
10.3 Aspects of high-altitude habitats 348
10.3.1 Geology and mountain floras 350
10.3.2 Adiabatic lapse rate 352
10.3.3 Mountain topography and biodiversity 352
10.4 Physiological implications for plant survival on high mountains
10.4.1 Water availability at high altitudes
10.4.2 Adapting to fluctuating temperatures
10.4.3 Protection against high levels of radiation at high altitudes and latitude
10.4.4 Effect of UV radiation on alpine vegetation
10.4.5 Oceanic mountain environments
10.4.6 Phenological responses of mountain plants
10.5 Alpine vegetation zonation – case studies
10.5.1 Temperate and boreal alpine zonation
10.5.2 Tropical and subtropical mountains – East Africa
10.5.3 South America
10.6 The world's highest forests
10.6.1 The Peruvian Highlands
10.7 High mountain plants and climate change
10.7.1 Indirect effects of increased temperature on alpine vegetation – reduction in winter snow cover
10.7.2 Effects of increased atmospheric CO₂ on high mountain vegetation
10.8 Alpine floral biology
10.9 Conclusions

11 Man at the margins
11.1 Human settlement in peripheral areas
11.2 Past and present concepts of marginality
11.2.1 Agricultural sustainability in marginal areas
11.3 Man in the terrestrial Arctic
11.3.1 Acquisition of natural resources at high latitudes
11.3.2 Future prospects for the tundra and its native peoples
11.4 Man on coastal margins
11.4.1 Human acceleration of soil impoverishment in oceanic regions
11.4.2 Sustainable agriculture in oceanic climates: Orkney – an oceanic exception
11.5 Exploiting the wetlands
11.5.1 Coastal wetlands
11.5.2 Human settlement in reed beds
11.5.3 Agricultural uses of wetlands
11.5.4 Recent developments in bog cultivation
11.5.5 Future uses for wetlands
11.6 Man in the mountains
11.6.1 Transhumance
11.6.2 Terrace farming
11.7 Conclusions

12 Summary and conclusions
12.1 Signs of change
12.2 Vegetation responses to climate change
12.3 Pre-adaptation of plants in marginal areas to climatic change
12.4 Physical fragility versus biological stability and diversity
12.5 Marginal areas and conservation
12.5.1 Regeneration and the role of margins
12.6 Future prospects for marginal areas

References
Author index
Species index
Subject index
Margins have long provided key questions for ecological investigation. Today with climatic warming becoming ever more apparent margins as regions of ecological change invite an assessment of their responses to environmental alteration. The purpose of this book is therefore to examine how marginal plant communities in different parts of the world are responding to climate change. Practically every aspect of modern biological enquiry can be used to address the nature of margins. Biogeography, demography, reproductive biology, physiology and genetics all provide cogent explanations as to why limits occur where they do. The aim of this book is to bring together, wherever possible, different avenues of enquiry in relation to explaining the existence of limits to plant distribution. Each of these disciplines can contribute to our understanding of the biological consequences of climatic warming.

Marginal areas have a number of features in common. These can be seen in demographic limits to population renewal, in adaptations to shortness of the growing season, in problems of access to resources, and impediments to reproduction. To avoid repetition an attempt is made therefore to discuss these common features before moving on to individual case studies.

Part I examines the nature of margins and their effects on biodiversity. Part II is functional, and explores how plants in marginal areas overcome the shortness of the growing season and other physical limitations in acquiring resources and reproducing. The remaining chapters look at individual examples of marginal areas which have been selected on the supposition that they may be sensitive to climatic change.

In a scenario of a warmer world it is highly probable that changing climatic conditions will have a particularly marked effect on human exploitation of
marginal areas. The history of human settlement in peripheral areas is therefore discussed in relation to our use of plants in marginal areas. Climatic change will also create problems for conservation particularly in relation to the interactions between human beings, their livestock and the environment. The consequences of both higher temperatures and greater human populations create a worldwide problem with particularly serious consequences for marginal regions.

In this book an attempt is made to compare the sensitivity of different margins with climate change and to explore the question of whether or not all peripheral areas are equally likely to suffer losses in biodiversity as a result of climatic change. The converse situation is also considered. Margins are by their very nature environmentally unstable. Does it therefore follow that plant populations adapted for life in areas of climatic uncertainty will prove to be pre-adapted to withstand the changes that may be brought about by a warmer world?

Numerous illustrations have been included as a reminder of the place of plants in their habitats and that whatever may be learnt from the application of sophisticated methods of investigation it is the existence of the plant in its environment that has prompted our initial curiosity.
Acknowledgements

This book would never have been finished if it were not for the many colleagues and friends who have been willing to give me the time and benefit of their specialist knowledge. I am especially grateful to colleagues who have read particular chapters, Professor R. J. Abbott (St Andrews), Professor R. Brändle (Berne), Professor F.-K. Holtmeier (Münster), Professor Ch. Körner Bale, Professor D. Tomba (Colorado), Dr L. Nagy (Glasgow), Professor S. Payette (Québec) and Dr C. Vassiliadis (Paris). They may have saved me from error; if not, the fault is entirely mine. Many others have provided invaluable help in sourcing data and providing illustrations from all corners of the globe.

I am particularly grateful for detailed documentation as well as access to extensive collections of images from distant places to Professor R. Cormack (St Andrews), Dr A. Gerlach (Oldenburg), Professor F.-K. Holtmeier (Münster), Professor R. Jefferies (Toronto), Dr L. Nagy (Glasgow), and Professor J. Svoboda (Toronto). The privilege of using these images is acknowledged in the legends.

My own opportunities for studying plants in different parts of the world have been greatly aided by generous assistance from the Natural Environment Research Council, the Carnegie Trust for the Universities of Scotland, the Leverhulme Foundation and the Erskine Trust of the University of Canterbury (New Zealand).

This work would never have been undertaken had it not been for the stimulation and encouragement provided by the Cambridge University Press and I am particularly indebted to Dr Alan Crowden for the initial imaginative prompting that made me attempt this task, and to Dr Dominic Lewis and the production staff for bringing it to completion.